Compressed resource data in 'dcmp' (1)
format,
as stored in compressed resources with header type 8
and decompressor ID 1
.
The 'dcmp' (1)
decompressor resource is included in the System file of System 7.0 and later.
This compression format is used for a few compressed resources in System 7.0's files
(such as the Finder Help file).
This decompressor is also included with and used by some other Apple applications,
such as ResEdit.
(Note: ResEdit includes the 'dcmp' (1)
resource,
but none of its resources actually use this decompressor.)
This compression format supports some basic general-purpose compression schemes, including backreferences to previous data and run-length encoding. It also includes some types of compression tailored specifically to Mac OS resources, including a set of single-byte codes that correspond to entries in a hard-coded lookup table.
The 'dcmp' (0)
compression format (see dcmp_0.ksy) is very similar to this format,
with the main difference that it operates mostly on units of 2 or 4 bytes.
This makes the ``dcmp' (0)format more suitable for word-aligned data, such as executable code, bitmaps, sounds, etc. The
'dcmp' (0)` format also appears to be generally preferred over `'dcmp' (1)`,
with the latter only being used in resource files that contain mostly unaligned data,
such as text.
This page hosts a formal specification of Compressed Macintosh resource data, Apple `'dcmp' (1)` format using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for C++11/STL generated by Kaitai Struct depends on the C++/STL runtime library. You have to install it before you can parse data.
For C++, the easiest way is to clone the runtime library sources and build them along with your project.
Using Kaitai Struct in C++/STL usually consists of 3 steps.
std::istream
). One can open local file for that, or use existing std::string
or char*
buffer.
#include <fstream>
std::ifstream is("path/to/local/file.bin", std::ifstream::binary);
#include <sstream>
std::istringstream is(str);
#include <sstream>
const char buf[] = { ... };
std::string str(buf, sizeof buf);
std::istringstream is(str);
#include "kaitai/kaitaistream.h"
kaitai::kstream ks(&is);
dcmp_1_t data(&ks);
After that, one can get various attributes from the structure by invoking getter methods like:
data.chunks() // => The sequence of chunks that make up the compressed data.
#pragma once
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <memory>
#include "dcmp_variable_length_integer.h"
#include <vector>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class dcmp_variable_length_integer_t;
/**
* Compressed resource data in `'dcmp' (1)` format,
* as stored in compressed resources with header type `8` and decompressor ID `1`.
*
* The `'dcmp' (1)` decompressor resource is included in the System file of System 7.0 and later.
* This compression format is used for a few compressed resources in System 7.0's files
* (such as the Finder Help file).
* This decompressor is also included with and used by some other Apple applications,
* such as ResEdit.
* (Note: ResEdit includes the `'dcmp' (1)` resource,
* but none of its resources actually use this decompressor.)
*
* This compression format supports some basic general-purpose compression schemes,
* including backreferences to previous data and run-length encoding.
* It also includes some types of compression tailored specifically to Mac OS resources,
* including a set of single-byte codes that correspond to entries in a hard-coded lookup table.
*
* The `'dcmp' (0)` compression format (see dcmp_0.ksy) is very similar to this format,
* with the main difference that it operates mostly on units of 2 or 4 bytes.
* This makes the ``dcmp' (0)` format more suitable for word-aligned data,
* such as executable code, bitmaps, sounds, etc.
* The `'dcmp' (0)` format also appears to be generally preferred over `'dcmp' (1)`,
* with the latter only being used in resource files that contain mostly unaligned data,
* such as text.
* \sa https://github.com/dgelessus/python-rsrcfork/blob/f891a6e/src/rsrcfork/compress/dcmp1.py Source
*/
class dcmp_1_t : public kaitai::kstruct {
public:
class chunk_t;
dcmp_1_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~dcmp_1_t();
/**
* A single chunk of compressed data.
* Each chunk in the compressed data expands to a sequence of bytes in the uncompressed data,
* except when `tag == 0xff`,
* which marks the end of the data and does not correspond to any bytes in the uncompressed data.
*
* Most chunks are stateless and always expand to the same data,
* regardless of where the chunk appears in the sequence.
* However,
* some chunks affect the behavior of future chunks,
* or expand to different data depending on which chunks came before them.
*/
class chunk_t : public kaitai::kstruct {
public:
class literal_body_t;
class backreference_body_t;
class table_lookup_body_t;
class end_body_t;
class extended_body_t;
enum tag_kind_t {
TAG_KIND_INVALID = -1,
TAG_KIND_LITERAL = 0,
TAG_KIND_BACKREFERENCE = 1,
TAG_KIND_TABLE_LOOKUP = 2,
TAG_KIND_EXTENDED = 3,
TAG_KIND_END = 4
};
chunk_t(kaitai::kstream* p__io, dcmp_1_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~chunk_t();
/**
* The body of a literal data chunk.
*
* The data that this chunk expands to is stored literally in the body (`literal`).
* Optionally,
* the literal data may also be stored for use by future backreference chunks (`do_store`).
*/
class literal_body_t : public kaitai::kstruct {
public:
literal_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~literal_body_t();
private:
bool f_do_store;
bool m_do_store;
public:
/**
* Whether this literal should be stored for use by future backreference chunks.
*
* See the documentation of the `backreference_body` type for details about backreference chunks.
*/
bool do_store();
private:
bool f_len_literal_m1_in_tag;
int32_t m_len_literal_m1_in_tag;
bool n_len_literal_m1_in_tag;
public:
bool _is_null_len_literal_m1_in_tag() { len_literal_m1_in_tag(); return n_len_literal_m1_in_tag; };
private:
public:
/**
* The part of the tag byte that indicates the length of the literal data,
* in bytes,
* minus one.
*
* If the tag byte is 0xd0 or 0xd1,
* the length is stored in a separate byte after the tag byte and before the literal data.
*/
int32_t len_literal_m1_in_tag();
private:
bool f_is_len_literal_separate;
bool m_is_len_literal_separate;
public:
/**
* Whether the length of the literal is stored separately from the tag.
*/
bool is_len_literal_separate();
private:
bool f_len_literal;
int32_t m_len_literal;
public:
/**
* The length of the literal data,
* in bytes.
*
* In practice,
* this value is always greater than zero,
* as there is no use in storing a zero-length literal.
*/
int32_t len_literal();
private:
uint8_t m_len_literal_separate;
bool n_len_literal_separate;
public:
bool _is_null_len_literal_separate() { len_literal_separate(); return n_len_literal_separate; };
private:
std::string m_literal;
uint8_t m_tag;
dcmp_1_t* m__root;
dcmp_1_t::chunk_t* m__parent;
public:
/**
* The length of the literal data,
* in bytes.
*
* This field is only present if the tag byte is 0xd0 or 0xd1.
* In practice,
* this only happens if the length is 0x11 or greater,
* because smaller lengths can be encoded into the tag byte.
*/
uint8_t len_literal_separate() const { return m_len_literal_separate; }
/**
* The literal data.
*/
std::string literal() const { return m_literal; }
/**
* The tag byte preceding this chunk body.
*/
uint8_t tag() const { return m_tag; }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t* _parent() const { return m__parent; }
};
/**
* The body of a backreference chunk.
*
* This chunk expands to the data stored in a preceding literal chunk,
* indicated by an index number (`index`).
*/
class backreference_body_t : public kaitai::kstruct {
public:
backreference_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~backreference_body_t();
private:
bool f_is_index_separate;
bool m_is_index_separate;
public:
/**
* Whether the index is stored separately from the tag.
*/
bool is_index_separate();
private:
bool f_index_in_tag;
int32_t m_index_in_tag;
public:
/**
* The index of the referenced literal chunk,
* as stored in the tag byte.
*/
int32_t index_in_tag();
private:
bool f_index_separate;
int32_t m_index_separate;
bool n_index_separate;
public:
bool _is_null_index_separate() { index_separate(); return n_index_separate; };
private:
public:
/**
* The index of the referenced literal chunk,
* as stored separately from the tag byte,
* with the implicit offset corrected for.
*/
int32_t index_separate();
private:
bool f_index;
int32_t m_index;
public:
/**
* The index of the referenced literal chunk.
*
* Stored literals are assigned index numbers in the order in which they appear in the compressed data,
* starting at 0.
* Non-stored literals are not counted in the numbering and cannot be referenced using backreferences.
* Once an index is assigned to a stored literal,
* it is never changed or unassigned for the entire length of the compressed data.
*
* As the name indicates,
* a backreference can only reference stored literal chunks found *before* the backreference,
* not ones that come after it.
*/
int32_t index();
private:
uint8_t m_index_separate_minus;
bool n_index_separate_minus;
public:
bool _is_null_index_separate_minus() { index_separate_minus(); return n_index_separate_minus; };
private:
uint8_t m_tag;
dcmp_1_t* m__root;
dcmp_1_t::chunk_t* m__parent;
public:
/**
* The index of the referenced literal chunk,
* stored separately from the tag.
* The value in this field is stored minus 0xb0.
*
* This field is only present if the tag byte is 0xd2.
* For other tag bytes,
* the index is encoded in the tag byte.
* Values smaller than 0xb0 cannot be stored in this field,
* they must always be encoded in the tag byte.
*/
uint8_t index_separate_minus() const { return m_index_separate_minus; }
/**
* The tag byte preceding this chunk body.
*/
uint8_t tag() const { return m_tag; }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t* _parent() const { return m__parent; }
};
/**
* The body of a table lookup chunk.
* This body is always empty.
*
* This chunk always expands to two bytes (`value`),
* determined from the tag byte using a fixed lookup table (`lookup_table`).
* This lookup table is hardcoded in the decompressor and always the same for all compressed data.
*/
class table_lookup_body_t : public kaitai::kstruct {
public:
table_lookup_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~table_lookup_body_t();
private:
bool f_lookup_table;
std::unique_ptr<std::vector<std::string>> m_lookup_table;
public:
/**
* Fixed lookup table that maps tag byte numbers to two bytes each.
*
* The entries in the lookup table are offset -
* index 0 stands for tag 0xd5, 1 for 0xd6, etc.
*/
std::vector<std::string>* lookup_table();
private:
bool f_value;
std::string m_value;
public:
/**
* The two bytes that the tag byte expands to,
* based on the fixed lookup table.
*/
std::string value();
private:
uint8_t m_tag;
dcmp_1_t* m__root;
dcmp_1_t::chunk_t* m__parent;
public:
/**
* The tag byte preceding this chunk body.
*/
uint8_t tag() const { return m_tag; }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t* _parent() const { return m__parent; }
};
/**
* The body of an end chunk.
* This body is always empty.
*
* The last chunk in the compressed data must always be an end chunk.
* An end chunk cannot appear elsewhere in the compressed data.
*/
class end_body_t : public kaitai::kstruct {
public:
end_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~end_body_t();
private:
dcmp_1_t* m__root;
dcmp_1_t::chunk_t* m__parent;
public:
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t* _parent() const { return m__parent; }
};
/**
* The body of an extended chunk.
* The meaning of this chunk depends on the extended tag byte stored in the chunk data.
*/
class extended_body_t : public kaitai::kstruct {
public:
class repeat_body_t;
extended_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~extended_body_t();
/**
* The body of a repeat chunk.
*
* This chunk expands to the same byte repeated a number of times,
* i. e. it implements a form of run-length encoding.
*/
class repeat_body_t : public kaitai::kstruct {
public:
repeat_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t::extended_body_t* p__parent = nullptr, dcmp_1_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~repeat_body_t();
private:
bool f_to_repeat;
int32_t m_to_repeat;
public:
/**
* The value to repeat.
*
* Although it is stored as a variable-length integer,
* this value must fit into an unsigned 8-bit integer.
*/
int32_t to_repeat();
private:
bool f_repeat_count_m1;
int32_t m_repeat_count_m1;
public:
/**
* The number of times to repeat the value,
* minus one.
*
* This value must not be negative.
*/
int32_t repeat_count_m1();
private:
bool f_repeat_count;
int32_t m_repeat_count;
public:
/**
* The number of times to repeat the value.
*
* This value must be positive.
*/
int32_t repeat_count();
private:
std::unique_ptr<dcmp_variable_length_integer_t> m_to_repeat_raw;
std::unique_ptr<dcmp_variable_length_integer_t> m_repeat_count_m1_raw;
dcmp_1_t* m__root;
dcmp_1_t::chunk_t::extended_body_t* m__parent;
public:
/**
* Raw variable-length integer representation of `to_repeat`.
*/
dcmp_variable_length_integer_t* to_repeat_raw() const { return m_to_repeat_raw.get(); }
/**
* Raw variable-length integer representation of `repeat_count_m1`.
*/
dcmp_variable_length_integer_t* repeat_count_m1_raw() const { return m_repeat_count_m1_raw.get(); }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t::extended_body_t* _parent() const { return m__parent; }
};
private:
uint8_t m_tag;
std::unique_ptr<repeat_body_t> m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
dcmp_1_t* m__root;
dcmp_1_t::chunk_t* m__parent;
public:
/**
* The chunk's extended tag byte.
* This controls the structure of the body and the meaning of the chunk.
*/
uint8_t tag() const { return m_tag; }
/**
* The chunk's body.
*/
repeat_body_t* body() const { return m_body.get(); }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t::chunk_t* _parent() const { return m__parent; }
};
private:
uint8_t m_tag;
std::unique_ptr<kaitai::kstruct> m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
dcmp_1_t* m__root;
dcmp_1_t* m__parent;
public:
/**
* The chunk's tag byte.
* This controls the structure of the body and the meaning of the chunk.
*/
uint8_t tag() const { return m_tag; }
/**
* The chunk's body.
*
* Certain chunks do not have any data following the tag byte.
* In this case,
* the body is a zero-length structure.
*/
kaitai::kstruct* body() const { return m_body.get(); }
dcmp_1_t* _root() const { return m__root; }
dcmp_1_t* _parent() const { return m__parent; }
};
private:
std::unique_ptr<std::vector<std::unique_ptr<chunk_t>>> m_chunks;
dcmp_1_t* m__root;
kaitai::kstruct* m__parent;
public:
/**
* The sequence of chunks that make up the compressed data.
*/
std::vector<std::unique_ptr<chunk_t>>* chunks() const { return m_chunks.get(); }
dcmp_1_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "dcmp_1.h"
dcmp_1_t::dcmp_1_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_chunks = nullptr;
_read();
}
void dcmp_1_t::_read() {
m_chunks = std::unique_ptr<std::vector<std::unique_ptr<chunk_t>>>(new std::vector<std::unique_ptr<chunk_t>>());
{
int i = 0;
chunk_t* _;
do {
_ = new chunk_t(m__io, this, m__root);
m_chunks->push_back(std::move(std::unique_ptr<chunk_t>(_)));
i++;
} while (!(_->tag() == 255));
}
}
dcmp_1_t::~dcmp_1_t() {
_clean_up();
}
void dcmp_1_t::_clean_up() {
}
dcmp_1_t::chunk_t::chunk_t(kaitai::kstream* p__io, dcmp_1_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
_read();
}
void dcmp_1_t::chunk_t::_read() {
m_tag = m__io->read_u1();
n_body = true;
switch ((( ((tag() >= 0) && (tag() <= 31)) ) ? (dcmp_1_t::chunk_t::TAG_KIND_LITERAL) : ((( ((tag() >= 32) && (tag() <= 207)) ) ? (dcmp_1_t::chunk_t::TAG_KIND_BACKREFERENCE) : ((( ((tag() >= 208) && (tag() <= 209)) ) ? (dcmp_1_t::chunk_t::TAG_KIND_LITERAL) : (((tag() == 210) ? (dcmp_1_t::chunk_t::TAG_KIND_BACKREFERENCE) : ((( ((tag() >= 213) && (tag() <= 253)) ) ? (dcmp_1_t::chunk_t::TAG_KIND_TABLE_LOOKUP) : (((tag() == 254) ? (dcmp_1_t::chunk_t::TAG_KIND_EXTENDED) : (((tag() == 255) ? (dcmp_1_t::chunk_t::TAG_KIND_END) : (dcmp_1_t::chunk_t::TAG_KIND_INVALID))))))))))))))) {
case dcmp_1_t::chunk_t::TAG_KIND_EXTENDED: {
n_body = false;
m_body = std::unique_ptr<extended_body_t>(new extended_body_t(m__io, this, m__root));
break;
}
case dcmp_1_t::chunk_t::TAG_KIND_LITERAL: {
n_body = false;
m_body = std::unique_ptr<literal_body_t>(new literal_body_t(tag(), m__io, this, m__root));
break;
}
case dcmp_1_t::chunk_t::TAG_KIND_END: {
n_body = false;
m_body = std::unique_ptr<end_body_t>(new end_body_t(m__io, this, m__root));
break;
}
case dcmp_1_t::chunk_t::TAG_KIND_TABLE_LOOKUP: {
n_body = false;
m_body = std::unique_ptr<table_lookup_body_t>(new table_lookup_body_t(tag(), m__io, this, m__root));
break;
}
case dcmp_1_t::chunk_t::TAG_KIND_BACKREFERENCE: {
n_body = false;
m_body = std::unique_ptr<backreference_body_t>(new backreference_body_t(tag(), m__io, this, m__root));
break;
}
}
}
dcmp_1_t::chunk_t::~chunk_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::_clean_up() {
if (!n_body) {
}
}
dcmp_1_t::chunk_t::literal_body_t::literal_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_tag = p_tag;
f_do_store = false;
f_len_literal_m1_in_tag = false;
f_is_len_literal_separate = false;
f_len_literal = false;
_read();
}
void dcmp_1_t::chunk_t::literal_body_t::_read() {
n_len_literal_separate = true;
if (is_len_literal_separate()) {
n_len_literal_separate = false;
m_len_literal_separate = m__io->read_u1();
}
m_literal = m__io->read_bytes(len_literal());
}
dcmp_1_t::chunk_t::literal_body_t::~literal_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::literal_body_t::_clean_up() {
if (!n_len_literal_separate) {
}
}
bool dcmp_1_t::chunk_t::literal_body_t::do_store() {
if (f_do_store)
return m_do_store;
m_do_store = ((is_len_literal_separate()) ? (tag() == 209) : ((tag() & 16) != 0));
f_do_store = true;
return m_do_store;
}
int32_t dcmp_1_t::chunk_t::literal_body_t::len_literal_m1_in_tag() {
if (f_len_literal_m1_in_tag)
return m_len_literal_m1_in_tag;
n_len_literal_m1_in_tag = true;
if (!(is_len_literal_separate())) {
n_len_literal_m1_in_tag = false;
m_len_literal_m1_in_tag = (tag() & 15);
}
f_len_literal_m1_in_tag = true;
return m_len_literal_m1_in_tag;
}
bool dcmp_1_t::chunk_t::literal_body_t::is_len_literal_separate() {
if (f_is_len_literal_separate)
return m_is_len_literal_separate;
m_is_len_literal_separate = tag() >= 208;
f_is_len_literal_separate = true;
return m_is_len_literal_separate;
}
int32_t dcmp_1_t::chunk_t::literal_body_t::len_literal() {
if (f_len_literal)
return m_len_literal;
m_len_literal = ((is_len_literal_separate()) ? (len_literal_separate()) : ((len_literal_m1_in_tag() + 1)));
f_len_literal = true;
return m_len_literal;
}
dcmp_1_t::chunk_t::backreference_body_t::backreference_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_tag = p_tag;
f_is_index_separate = false;
f_index_in_tag = false;
f_index_separate = false;
f_index = false;
_read();
}
void dcmp_1_t::chunk_t::backreference_body_t::_read() {
n_index_separate_minus = true;
if (is_index_separate()) {
n_index_separate_minus = false;
m_index_separate_minus = m__io->read_u1();
}
}
dcmp_1_t::chunk_t::backreference_body_t::~backreference_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::backreference_body_t::_clean_up() {
if (!n_index_separate_minus) {
}
}
bool dcmp_1_t::chunk_t::backreference_body_t::is_index_separate() {
if (f_is_index_separate)
return m_is_index_separate;
m_is_index_separate = tag() == 210;
f_is_index_separate = true;
return m_is_index_separate;
}
int32_t dcmp_1_t::chunk_t::backreference_body_t::index_in_tag() {
if (f_index_in_tag)
return m_index_in_tag;
m_index_in_tag = (tag() - 32);
f_index_in_tag = true;
return m_index_in_tag;
}
int32_t dcmp_1_t::chunk_t::backreference_body_t::index_separate() {
if (f_index_separate)
return m_index_separate;
n_index_separate = true;
if (is_index_separate()) {
n_index_separate = false;
m_index_separate = (index_separate_minus() + 176);
}
f_index_separate = true;
return m_index_separate;
}
int32_t dcmp_1_t::chunk_t::backreference_body_t::index() {
if (f_index)
return m_index;
m_index = ((is_index_separate()) ? (index_separate()) : (index_in_tag()));
f_index = true;
return m_index;
}
dcmp_1_t::chunk_t::table_lookup_body_t::table_lookup_body_t(uint8_t p_tag, kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_tag = p_tag;
f_lookup_table = false;
f_value = false;
_read();
}
void dcmp_1_t::chunk_t::table_lookup_body_t::_read() {
}
dcmp_1_t::chunk_t::table_lookup_body_t::~table_lookup_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::table_lookup_body_t::_clean_up() {
}
std::vector<std::string>* dcmp_1_t::chunk_t::table_lookup_body_t::lookup_table() {
if (f_lookup_table)
return m_lookup_table.get();
m_lookup_table = std::unique_ptr<std::vector<std::string>>(new std::vector<std::string>{std::string("\x00\x00", 2), std::string("\x00\x01", 2), std::string("\x00\x02", 2), std::string("\x00\x03", 2), std::string("\x2E\x01", 2), std::string("\x3E\x01", 2), std::string("\x01\x01", 2), std::string("\x1E\x01", 2), std::string("\xFF\xFF", 2), std::string("\x0E\x01", 2), std::string("\x31\x00", 2), std::string("\x11\x12", 2), std::string("\x01\x07", 2), std::string("\x33\x32", 2), std::string("\x12\x39", 2), std::string("\xED\x10", 2), std::string("\x01\x27", 2), std::string("\x23\x22", 2), std::string("\x01\x37", 2), std::string("\x07\x06", 2), std::string("\x01\x17", 2), std::string("\x01\x23", 2), std::string("\x00\xFF", 2), std::string("\x00\x2F", 2), std::string("\x07\x0E", 2), std::string("\xFD\x3C", 2), std::string("\x01\x35", 2), std::string("\x01\x15", 2), std::string("\x01\x02", 2), std::string("\x00\x07", 2), std::string("\x00\x3E", 2), std::string("\x05\xD5", 2), std::string("\x02\x01", 2), std::string("\x06\x07", 2), std::string("\x07\x08", 2), std::string("\x30\x01", 2), std::string("\x01\x33", 2), std::string("\x00\x10", 2), std::string("\x17\x16", 2), std::string("\x37\x3E", 2), std::string("\x36\x37", 2)});
f_lookup_table = true;
return m_lookup_table.get();
}
std::string dcmp_1_t::chunk_t::table_lookup_body_t::value() {
if (f_value)
return m_value;
m_value = lookup_table()->at((tag() - 213));
f_value = true;
return m_value;
}
dcmp_1_t::chunk_t::end_body_t::end_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
_read();
}
void dcmp_1_t::chunk_t::end_body_t::_read() {
}
dcmp_1_t::chunk_t::end_body_t::~end_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::end_body_t::_clean_up() {
}
dcmp_1_t::chunk_t::extended_body_t::extended_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
_read();
}
void dcmp_1_t::chunk_t::extended_body_t::_read() {
m_tag = m__io->read_u1();
n_body = true;
switch (tag()) {
case 2: {
n_body = false;
m_body = std::unique_ptr<repeat_body_t>(new repeat_body_t(m__io, this, m__root));
break;
}
}
}
dcmp_1_t::chunk_t::extended_body_t::~extended_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::extended_body_t::_clean_up() {
if (!n_body) {
}
}
dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::repeat_body_t(kaitai::kstream* p__io, dcmp_1_t::chunk_t::extended_body_t* p__parent, dcmp_1_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_to_repeat_raw = nullptr;
m_repeat_count_m1_raw = nullptr;
f_to_repeat = false;
f_repeat_count_m1 = false;
f_repeat_count = false;
_read();
}
void dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::_read() {
m_to_repeat_raw = std::unique_ptr<dcmp_variable_length_integer_t>(new dcmp_variable_length_integer_t(m__io));
m_repeat_count_m1_raw = std::unique_ptr<dcmp_variable_length_integer_t>(new dcmp_variable_length_integer_t(m__io));
}
dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::~repeat_body_t() {
_clean_up();
}
void dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::_clean_up() {
}
int32_t dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::to_repeat() {
if (f_to_repeat)
return m_to_repeat;
m_to_repeat = to_repeat_raw()->value();
f_to_repeat = true;
return m_to_repeat;
}
int32_t dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::repeat_count_m1() {
if (f_repeat_count_m1)
return m_repeat_count_m1;
m_repeat_count_m1 = repeat_count_m1_raw()->value();
f_repeat_count_m1 = true;
return m_repeat_count_m1;
}
int32_t dcmp_1_t::chunk_t::extended_body_t::repeat_body_t::repeat_count() {
if (f_repeat_count)
return m_repeat_count;
m_repeat_count = (repeat_count_m1() + 1);
f_repeat_count = true;
return m_repeat_count;
}