Google Protocol Buffers (AKA protobuf) is a popular data serialization scheme used for communication protocols, data storage, etc. There are implementations are available for almost every popular language. The focus points of this scheme are brevity (data is encoded in a very size-efficient manner) and extensibility (one can add keys to the structure, while keeping it readable in previous version of software).
Protobuf uses semi-self-describing encoding scheme for its
messages. It means that it is possible to parse overall structure of
the message (skipping over fields one can't understand), but to
fully understand the message, one needs a protocol definition file
(.proto
). To be specific:
.proto
file provides info on
which symbolic field names these field tags map to.sint32
vs uint32
vs some enum, or string
from bytes
), but
it's enough information to determine how many bytes to
parse. Interpretation of the value should be done according to the
type specified in .proto
file.This page hosts a formal specification of Google Protocol Buffers (protobuf) using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for Ruby generated by Kaitai Struct depends on the Ruby runtime library. You have to install it before you can parse data.
The Ruby runtime library can be installed from RubyGems:
gem install kaitai-struct
Parse a local file and get structure in memory:
data = GoogleProtobuf.from_file("path/to/local/file.bin")
Or parse structure from a string of bytes:
bytes = "\x00\x01\x02..."
data = GoogleProtobuf.new(Kaitai::Struct::Stream.new(bytes))
After that, one can get various attributes from the structure by invoking getter methods like:
data.pairs # => Key-value pairs which constitute a message
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
require 'kaitai/struct/struct'
unless Gem::Version.new(Kaitai::Struct::VERSION) >= Gem::Version.new('0.9')
raise "Incompatible Kaitai Struct Ruby API: 0.9 or later is required, but you have #{Kaitai::Struct::VERSION}"
end
##
# Google Protocol Buffers (AKA protobuf) is a popular data
# serialization scheme used for communication protocols, data storage,
# etc. There are implementations are available for almost every
# popular language. The focus points of this scheme are brevity (data
# is encoded in a very size-efficient manner) and extensibility (one
# can add keys to the structure, while keeping it readable in previous
# version of software).
#
# Protobuf uses semi-self-describing encoding scheme for its
# messages. It means that it is possible to parse overall structure of
# the message (skipping over fields one can't understand), but to
# fully understand the message, one needs a protocol definition file
# (`.proto`). To be specific:
#
# * "Keys" in key-value pairs provided in the message are identified
# only with an integer "field tag". `.proto` file provides info on
# which symbolic field names these field tags map to.
# * "Keys" also provide something called "wire type". It's not a data
# type in its common sense (i.e. you can't, for example, distinguish
# `sint32` vs `uint32` vs some enum, or `string` from `bytes`), but
# it's enough information to determine how many bytes to
# parse. Interpretation of the value should be done according to the
# type specified in `.proto` file.
# * There's no direct information on which fields are optional /
# required, which fields may be repeated or constitute a map, what
# restrictions are placed on fields usage in a single message, what
# are the fields' default values, etc, etc.
# @see https://protobuf.dev/programming-guides/encoding/ Source
class GoogleProtobuf < Kaitai::Struct::Struct
def initialize(_io, _parent = nil, _root = self)
super(_io, _parent, _root)
_read
end
def _read
@pairs = []
i = 0
while not @_io.eof?
@pairs << Pair.new(@_io, self, @_root)
i += 1
end
self
end
##
# Key-value pair
class Pair < Kaitai::Struct::Struct
WIRE_TYPES = {
0 => :wire_types_varint,
1 => :wire_types_bit_64,
2 => :wire_types_len_delimited,
3 => :wire_types_group_start,
4 => :wire_types_group_end,
5 => :wire_types_bit_32,
}
I__WIRE_TYPES = WIRE_TYPES.invert
def initialize(_io, _parent = nil, _root = self)
super(_io, _parent, _root)
_read
end
def _read
@key = VlqBase128Le.new(@_io)
case wire_type
when :wire_types_varint
@value = VlqBase128Le.new(@_io)
when :wire_types_len_delimited
@value = DelimitedBytes.new(@_io, self, @_root)
when :wire_types_bit_64
@value = @_io.read_u8le
when :wire_types_bit_32
@value = @_io.read_u4le
end
self
end
##
# "Wire type" is a part of the "key" that carries enough
# information to parse value from the wire, i.e. read correct
# amount of bytes, but there's not enough informaton to
# interprete in unambiguously. For example, one can't clearly
# distinguish 64-bit fixed-sized integers from 64-bit floats,
# signed zigzag-encoded varints from regular unsigned varints,
# arbitrary bytes from UTF-8 encoded strings, etc.
def wire_type
return @wire_type unless @wire_type.nil?
@wire_type = Kaitai::Struct::Stream::resolve_enum(WIRE_TYPES, (key.value & 7))
@wire_type
end
##
# Identifies a field of protocol. One can look up symbolic
# field name in a `.proto` file by this field tag.
def field_tag
return @field_tag unless @field_tag.nil?
@field_tag = (key.value >> 3)
@field_tag
end
##
# Key is a bit-mapped variable-length integer: lower 3 bits
# are used for "wire type", and everything higher designates
# an integer "field tag".
attr_reader :key
##
# Value that corresponds to field identified by
# `field_tag`. Type is determined approximately: there is
# enough information to parse it unambiguously from a stream,
# but further infromation from `.proto` file is required to
# interprete it properly.
attr_reader :value
end
class DelimitedBytes < Kaitai::Struct::Struct
def initialize(_io, _parent = nil, _root = self)
super(_io, _parent, _root)
_read
end
def _read
@len = VlqBase128Le.new(@_io)
@body = @_io.read_bytes(len.value)
self
end
attr_reader :len
attr_reader :body
end
##
# Key-value pairs which constitute a message
attr_reader :pairs
end