Native format of Hashcat password "recovery" utility
This page hosts a formal specification of Hashcat capture file using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for C++98/STL generated by Kaitai Struct depends on the C++/STL runtime library. You have to install it before you can parse data.
For C++, the easiest way is to clone the runtime library sources and build them along with your project.
Using Kaitai Struct in C++/STL usually consists of 3 steps.
std::istream
). One can open local file for that, or use existing std::string
or char*
buffer.
#include <fstream>
std::ifstream is("path/to/local/file.hccapx", std::ifstream::binary);
#include <sstream>
std::istringstream is(str);
#include <sstream>
const char buf[] = { ... };
std::string str(buf, sizeof buf);
std::istringstream is(str);
#include "kaitai/kaitaistream.h"
kaitai::kstream ks(&is);
hccapx_t data(&ks);
After that, one can get various attributes from the structure by invoking getter methods like:
data.records() // => get records
#ifndef HCCAPX_H_
#define HCCAPX_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <vector>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
/**
* Native format of Hashcat password "recovery" utility
* \sa https://hashcat.net/wiki/doku.php?id=hccapx Source
*/
class hccapx_t : public kaitai::kstruct {
public:
class hccapx_record_t;
hccapx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, hccapx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~hccapx_t();
class hccapx_record_t : public kaitai::kstruct {
public:
hccapx_record_t(kaitai::kstream* p__io, hccapx_t* p__parent = 0, hccapx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~hccapx_record_t();
private:
std::string m_magic;
uint32_t m_version;
bool m_ignore_replay_counter;
uint64_t m_message_pair;
uint8_t m_len_essid;
std::string m_essid;
std::string m_padding1;
uint8_t m_keyver;
std::string m_keymic;
std::string m_mac_ap;
std::string m_nonce_ap;
std::string m_mac_station;
std::string m_nonce_station;
uint16_t m_len_eapol;
std::string m_eapol;
std::string m_padding2;
hccapx_t* m__root;
hccapx_t* m__parent;
public:
std::string magic() const { return m_magic; }
/**
* The version number of the .hccapx file format.
*/
uint32_t version() const { return m_version; }
/**
* Indicates if the message pair matching was done based on
* replay counter or not.
*
* Whenever it was set to 1 it means that the replay counter
* was ignored (i.e. it was not considered at all by the
* matching algorithm).
*
* Hashcat currently does not perform any particular action
* based on this bit, but nonetheless this information could be
* crucial for some 3th party tools and for
* analysis/statistics. There could be some opportunity to
* implement some further logic based on this particular
* information also within hashcat (in the future).
*/
bool ignore_replay_counter() const { return m_ignore_replay_counter; }
/**
* The message_pair value describes which messages of the 4-way
* handshake were combined to form the .hccapx structure. It is
* always a pair of 2 messages: 1 from the AP (access point)
* and 1 from the STA (client).
*
* Furthermore, the message_pair value also gives a hint from
* which of the 2 messages the EAPOL origins. This is
* interesting data, but not necessarily needed for hashcat to
* be able to crack the hash.
*
* On the other hand, it could be very important to know if
* "only" message 1 and message 2 were captured or if for
* instance message 3 and/or message 4 were captured too. If
* message 3 and/or message 4 were captured it should be a hard
* evidence that the connection was established and that the
* password the client used was the correct one.
*/
uint64_t message_pair() const { return m_message_pair; }
uint8_t len_essid() const { return m_len_essid; }
std::string essid() const { return m_essid; }
std::string padding1() const { return m_padding1; }
/**
* The flag used to distinguish WPA from WPA2 ciphers. Value of
* 1 means WPA, other - WPA2.
*/
uint8_t keyver() const { return m_keyver; }
/**
* The final hash value. MD5 for WPA and SHA-1 for WPA2
* (truncated to 128 bit).
*/
std::string keymic() const { return m_keymic; }
/**
* The BSSID (MAC address) of the access point.
*/
std::string mac_ap() const { return m_mac_ap; }
/**
* Nonce (random salt) generated by the access point.
*/
std::string nonce_ap() const { return m_nonce_ap; }
/**
* The MAC address of the client connecting to the access point.
*/
std::string mac_station() const { return m_mac_station; }
/**
* Nonce (random salt) generated by the client connecting to the access point.
*/
std::string nonce_station() const { return m_nonce_station; }
/**
* The length of the EAPOL data.
*/
uint16_t len_eapol() const { return m_len_eapol; }
std::string eapol() const { return m_eapol; }
std::string padding2() const { return m_padding2; }
hccapx_t* _root() const { return m__root; }
hccapx_t* _parent() const { return m__parent; }
};
private:
std::vector<hccapx_record_t*>* m_records;
hccapx_t* m__root;
kaitai::kstruct* m__parent;
public:
std::vector<hccapx_record_t*>* records() const { return m_records; }
hccapx_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // HCCAPX_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "hccapx.h"
#include "kaitai/exceptions.h"
hccapx_t::hccapx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, hccapx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_records = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void hccapx_t::_read() {
m_records = new std::vector<hccapx_record_t*>();
{
int i = 0;
while (!m__io->is_eof()) {
m_records->push_back(new hccapx_record_t(m__io, this, m__root));
i++;
}
}
}
hccapx_t::~hccapx_t() {
_clean_up();
}
void hccapx_t::_clean_up() {
if (m_records) {
for (std::vector<hccapx_record_t*>::iterator it = m_records->begin(); it != m_records->end(); ++it) {
delete *it;
}
delete m_records; m_records = 0;
}
}
hccapx_t::hccapx_record_t::hccapx_record_t(kaitai::kstream* p__io, hccapx_t* p__parent, hccapx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void hccapx_t::hccapx_record_t::_read() {
m_magic = m__io->read_bytes(4);
if (!(magic() == std::string("\x48\x43\x50\x58", 4))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\x48\x43\x50\x58", 4), magic(), _io(), std::string("/types/hccapx_record/seq/0"));
}
m_version = m__io->read_u4le();
m_ignore_replay_counter = m__io->read_bits_int_be(1);
m_message_pair = m__io->read_bits_int_be(7);
m__io->align_to_byte();
m_len_essid = m__io->read_u1();
m_essid = m__io->read_bytes(len_essid());
m_padding1 = m__io->read_bytes((32 - len_essid()));
m_keyver = m__io->read_u1();
m_keymic = m__io->read_bytes(16);
m_mac_ap = m__io->read_bytes(6);
m_nonce_ap = m__io->read_bytes(32);
m_mac_station = m__io->read_bytes(6);
m_nonce_station = m__io->read_bytes(32);
m_len_eapol = m__io->read_u2le();
m_eapol = m__io->read_bytes(len_eapol());
m_padding2 = m__io->read_bytes((256 - len_eapol()));
}
hccapx_t::hccapx_record_t::~hccapx_record_t() {
_clean_up();
}
void hccapx_t::hccapx_record_t::_clean_up() {
}