InfluxDB TSM file: Python parsing library

InfluxDB is a scalable database optimized for storage of time series, real-time application metrics, operations monitoring events, etc, written in Go.

Data is stored in .tsm files, which are kept pretty simple conceptually. Each .tsm file contains a header and footer, which stores offset to an index. Index is used to find a data block for a requested time boundary.

Application

InfluxDB

File extension

tsm

KS implementation details

License: MIT

References

This page hosts a formal specification of InfluxDB TSM file using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.

Usage

Runtime library

All parsing code for Python generated by Kaitai Struct depends on the Python runtime library. You have to install it before you can parse data.

The Python runtime library can be installed from PyPI:

python3 -m pip install kaitaistruct

Code

Parse a local file and get structure in memory:

data = Tsm.from_file("path/to/local/file.tsm")

Or parse structure from a bytes:

from kaitaistruct import KaitaiStream, BytesIO

raw = b"\x00\x01\x02..."
data = Tsm(KaitaiStream(BytesIO(raw)))

After that, one can get various attributes from the structure by invoking getter methods like:

data.header # => get header

Python source code to parse InfluxDB TSM file

tsm.py

# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
# type: ignore

import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO


if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 11):
    raise Exception("Incompatible Kaitai Struct Python API: 0.11 or later is required, but you have %s" % (kaitaistruct.__version__))

class Tsm(KaitaiStruct):
    """InfluxDB is a scalable database optimized for storage of time
    series, real-time application metrics, operations monitoring events,
    etc, written in Go.
    
    Data is stored in .tsm files, which are kept pretty simple
    conceptually. Each .tsm file contains a header and footer, which
    stores offset to an index. Index is used to find a data block for a
    requested time boundary.
    """
    def __init__(self, _io, _parent=None, _root=None):
        super(Tsm, self).__init__(_io)
        self._parent = _parent
        self._root = _root or self
        self._read()

    def _read(self):
        self.header = Tsm.Header(self._io, self, self._root)


    def _fetch_instances(self):
        pass
        self.header._fetch_instances()
        _ = self.index
        if hasattr(self, '_m_index'):
            pass
            self._m_index._fetch_instances()


    class Header(KaitaiStruct):
        def __init__(self, _io, _parent=None, _root=None):
            super(Tsm.Header, self).__init__(_io)
            self._parent = _parent
            self._root = _root
            self._read()

        def _read(self):
            self.magic = self._io.read_bytes(4)
            if not self.magic == b"\x16\xD1\x16\xD1":
                raise kaitaistruct.ValidationNotEqualError(b"\x16\xD1\x16\xD1", self.magic, self._io, u"/types/header/seq/0")
            self.version = self._io.read_u1()


        def _fetch_instances(self):
            pass


    class Index(KaitaiStruct):
        def __init__(self, _io, _parent=None, _root=None):
            super(Tsm.Index, self).__init__(_io)
            self._parent = _parent
            self._root = _root
            self._read()

        def _read(self):
            self.offset = self._io.read_u8be()


        def _fetch_instances(self):
            pass
            _ = self.entries
            if hasattr(self, '_m_entries'):
                pass
                for i in range(len(self._m_entries)):
                    pass
                    self._m_entries[i]._fetch_instances()



        class IndexHeader(KaitaiStruct):
            def __init__(self, _io, _parent=None, _root=None):
                super(Tsm.Index.IndexHeader, self).__init__(_io)
                self._parent = _parent
                self._root = _root
                self._read()

            def _read(self):
                self.key_len = self._io.read_u2be()
                self.key = (self._io.read_bytes(self.key_len)).decode(u"UTF-8")
                self.type = self._io.read_u1()
                self.entry_count = self._io.read_u2be()
                self.index_entries = []
                for i in range(self.entry_count):
                    self.index_entries.append(Tsm.Index.IndexHeader.IndexEntry(self._io, self, self._root))



            def _fetch_instances(self):
                pass
                for i in range(len(self.index_entries)):
                    pass
                    self.index_entries[i]._fetch_instances()


            class IndexEntry(KaitaiStruct):
                def __init__(self, _io, _parent=None, _root=None):
                    super(Tsm.Index.IndexHeader.IndexEntry, self).__init__(_io)
                    self._parent = _parent
                    self._root = _root
                    self._read()

                def _read(self):
                    self.min_time = self._io.read_u8be()
                    self.max_time = self._io.read_u8be()
                    self.block_offset = self._io.read_u8be()
                    self.block_size = self._io.read_u4be()


                def _fetch_instances(self):
                    pass
                    _ = self.block
                    if hasattr(self, '_m_block'):
                        pass
                        self._m_block._fetch_instances()


                class BlockEntry(KaitaiStruct):
                    def __init__(self, _io, _parent=None, _root=None):
                        super(Tsm.Index.IndexHeader.IndexEntry.BlockEntry, self).__init__(_io)
                        self._parent = _parent
                        self._root = _root
                        self._read()

                    def _read(self):
                        self.crc32 = self._io.read_u4be()
                        self.data = self._io.read_bytes(self._parent.block_size - 4)


                    def _fetch_instances(self):
                        pass


                @property
                def block(self):
                    if hasattr(self, '_m_block'):
                        return self._m_block

                    io = self._root._io
                    _pos = io.pos()
                    io.seek(self.block_offset)
                    self._m_block = Tsm.Index.IndexHeader.IndexEntry.BlockEntry(io, self, self._root)
                    io.seek(_pos)
                    return getattr(self, '_m_block', None)



        @property
        def entries(self):
            if hasattr(self, '_m_entries'):
                return self._m_entries

            _pos = self._io.pos()
            self._io.seek(self.offset)
            self._m_entries = []
            i = 0
            while True:
                _ = Tsm.Index.IndexHeader(self._io, self, self._root)
                self._m_entries.append(_)
                if self._io.pos() == self._io.size() - 8:
                    break
                i += 1
            self._io.seek(_pos)
            return getattr(self, '_m_entries', None)


    @property
    def index(self):
        if hasattr(self, '_m_index'):
            return self._m_index

        _pos = self._io.pos()
        self._io.seek(self._io.size() - 8)
        self._m_index = Tsm.Index(self._io, self, self._root)
        self._io.seek(_pos)
        return getattr(self, '_m_index', None)