InfluxDB is a scalable database optimized for storage of time series, real-time application metrics, operations monitoring events, etc, written in Go.
Data is stored in .tsm files, which are kept pretty simple conceptually. Each .tsm file contains a header and footer, which stores offset to an index. Index is used to find a data block for a requested time boundary.
This page hosts a formal specification of InfluxDB TSM file using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for Python generated by Kaitai Struct depends on the Python runtime library. You have to install it before you can parse data.
The Python runtime library can be installed from PyPI:
python3 -m pip install kaitaistruct
Parse a local file and get structure in memory:
data = Tsm.from_file("path/to/local/file.tsm")
Or parse structure from a bytes:
from kaitaistruct import KaitaiStream, BytesIO
raw = b"\x00\x01\x02..."
data = Tsm(KaitaiStream(BytesIO(raw)))
After that, one can get various attributes from the structure by invoking getter methods like:
data.header # => get header
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
# type: ignore
import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO
if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 11):
raise Exception("Incompatible Kaitai Struct Python API: 0.11 or later is required, but you have %s" % (kaitaistruct.__version__))
class Tsm(KaitaiStruct):
"""InfluxDB is a scalable database optimized for storage of time
series, real-time application metrics, operations monitoring events,
etc, written in Go.
Data is stored in .tsm files, which are kept pretty simple
conceptually. Each .tsm file contains a header and footer, which
stores offset to an index. Index is used to find a data block for a
requested time boundary.
"""
def __init__(self, _io, _parent=None, _root=None):
super(Tsm, self).__init__(_io)
self._parent = _parent
self._root = _root or self
self._read()
def _read(self):
self.header = Tsm.Header(self._io, self, self._root)
def _fetch_instances(self):
pass
self.header._fetch_instances()
_ = self.index
if hasattr(self, '_m_index'):
pass
self._m_index._fetch_instances()
class Header(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
super(Tsm.Header, self).__init__(_io)
self._parent = _parent
self._root = _root
self._read()
def _read(self):
self.magic = self._io.read_bytes(4)
if not self.magic == b"\x16\xD1\x16\xD1":
raise kaitaistruct.ValidationNotEqualError(b"\x16\xD1\x16\xD1", self.magic, self._io, u"/types/header/seq/0")
self.version = self._io.read_u1()
def _fetch_instances(self):
pass
class Index(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
super(Tsm.Index, self).__init__(_io)
self._parent = _parent
self._root = _root
self._read()
def _read(self):
self.offset = self._io.read_u8be()
def _fetch_instances(self):
pass
_ = self.entries
if hasattr(self, '_m_entries'):
pass
for i in range(len(self._m_entries)):
pass
self._m_entries[i]._fetch_instances()
class IndexHeader(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
super(Tsm.Index.IndexHeader, self).__init__(_io)
self._parent = _parent
self._root = _root
self._read()
def _read(self):
self.key_len = self._io.read_u2be()
self.key = (self._io.read_bytes(self.key_len)).decode(u"UTF-8")
self.type = self._io.read_u1()
self.entry_count = self._io.read_u2be()
self.index_entries = []
for i in range(self.entry_count):
self.index_entries.append(Tsm.Index.IndexHeader.IndexEntry(self._io, self, self._root))
def _fetch_instances(self):
pass
for i in range(len(self.index_entries)):
pass
self.index_entries[i]._fetch_instances()
class IndexEntry(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
super(Tsm.Index.IndexHeader.IndexEntry, self).__init__(_io)
self._parent = _parent
self._root = _root
self._read()
def _read(self):
self.min_time = self._io.read_u8be()
self.max_time = self._io.read_u8be()
self.block_offset = self._io.read_u8be()
self.block_size = self._io.read_u4be()
def _fetch_instances(self):
pass
_ = self.block
if hasattr(self, '_m_block'):
pass
self._m_block._fetch_instances()
class BlockEntry(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
super(Tsm.Index.IndexHeader.IndexEntry.BlockEntry, self).__init__(_io)
self._parent = _parent
self._root = _root
self._read()
def _read(self):
self.crc32 = self._io.read_u4be()
self.data = self._io.read_bytes(self._parent.block_size - 4)
def _fetch_instances(self):
pass
@property
def block(self):
if hasattr(self, '_m_block'):
return self._m_block
io = self._root._io
_pos = io.pos()
io.seek(self.block_offset)
self._m_block = Tsm.Index.IndexHeader.IndexEntry.BlockEntry(io, self, self._root)
io.seek(_pos)
return getattr(self, '_m_block', None)
@property
def entries(self):
if hasattr(self, '_m_entries'):
return self._m_entries
_pos = self._io.pos()
self._io.seek(self.offset)
self._m_entries = []
i = 0
while True:
_ = Tsm.Index.IndexHeader(self._io, self, self._root)
self._m_entries.append(_)
if self._io.pos() == self._io.size() - 8:
break
i += 1
self._io.seek(_pos)
return getattr(self, '_m_entries', None)
@property
def index(self):
if hasattr(self, '_m_index'):
return self._m_index
_pos = self._io.pos()
self._io.seek(self._io.size() - 8)
self._m_index = Tsm.Index(self._io, self, self._root)
self._io.seek(_pos)
return getattr(self, '_m_index', None)