TE (Terse Executable) file: Lua parsing library

This type of executables could be found inside the UEFI firmware. The UEFI firmware is stored in SPI flash memory, which is a chip soldered on a system's motherboard. UEFI firmware is very modular: it usually contains dozens, if not hundreds, of executables. To store all these separates files, the firmware is laid out in volumes using the Firmware File System (FFS), a file system specifically designed to store firmware images. The volumes contain files that are identified by GUIDs and each of these files contain one or more sections holding the data. One of these sections contains the actual executable image. Most of the executable images follow the PE format. However, some of them follow the TE format.

The Terse Executable (TE) image format was created as a mechanism to reduce the overhead of the PE/COFF headers in PE32/PE32+ images, resulting in a corresponding reduction of image sizes for executables running in the PI (Platform Initialization) Architecture environment. Reducing image size provides an opportunity for use of a smaller system flash part.

So the TE format is basically a stripped version of PE.

Application

UEFI

File extension

["efi", "te"]

KS implementation details

License: CC0-1.0
Minimal Kaitai Struct required: 0.7

References

This page hosts a formal specification of TE (Terse Executable) file using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.

Lua source code to parse TE (Terse Executable) file

uefi_te.lua

-- This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
--
-- This file is compatible with Lua 5.3

local class = require("class")
require("kaitaistruct")
local stringstream = require("string_stream")
local enum = require("enum")
local str_decode = require("string_decode")

-- 
-- This type of executables could be found inside the UEFI firmware. The UEFI
-- firmware is stored in SPI flash memory, which is a chip soldered on a
-- system's motherboard. UEFI firmware is very modular: it usually contains
-- dozens, if not hundreds, of executables. To store all these separates files,
-- the firmware is laid out in volumes using the Firmware File System (FFS), a
-- file system specifically designed to store firmware images. The volumes
-- contain files that are identified by GUIDs and each of these files contain
-- one or more sections holding the data. One of these sections contains the
-- actual executable image. Most of the executable images follow the PE format.
-- However, some of them follow the TE format.
-- 
-- The Terse Executable (TE) image format was created as a mechanism to reduce
-- the overhead of the PE/COFF headers in PE32/PE32+ images, resulting in a
-- corresponding reduction of image sizes for executables running in the PI
-- (Platform Initialization) Architecture environment. Reducing image size
-- provides an opportunity for use of a smaller system flash part.
-- 
-- So the TE format is basically a stripped version of PE.
-- See also: Source (https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf)
UefiTe = class.class(KaitaiStruct)

function UefiTe:_init(io, parent, root)
  KaitaiStruct._init(self, io)
  self._parent = parent
  self._root = root or self
  self:_read()
end

function UefiTe:_read()
  self._raw_te_hdr = self._io:read_bytes(40)
  local _io = KaitaiStream(stringstream(self._raw_te_hdr))
  self.te_hdr = UefiTe.TeHeader(_io, self, self._root)
  self.sections = {}
  for i = 0, self.te_hdr.num_sections - 1 do
    self.sections[i + 1] = UefiTe.Section(self._io, self, self._root)
  end
end


UefiTe.TeHeader = class.class(KaitaiStruct)

UefiTe.TeHeader.MachineType = enum.Enum {
  unknown = 0,
  i386 = 332,
  r4000 = 358,
  wce_mips_v2 = 361,
  alpha = 388,
  sh3 = 418,
  sh3_dsp = 419,
  sh4 = 422,
  sh5 = 424,
  arm = 448,
  thumb = 450,
  arm_nt = 452,
  am33 = 467,
  powerpc = 496,
  powerpc_fp = 497,
  ia64 = 512,
  mips16 = 614,
  alpha64_or_axp64 = 644,
  mips_fpu = 870,
  mips16_fpu = 1126,
  ebc = 3772,
  riscv32 = 20530,
  riscv64 = 20580,
  riscv128 = 20776,
  loongarch32 = 25138,
  loongarch64 = 25188,
  amd64 = 34404,
  m32r = 36929,
  arm64 = 43620,
}

UefiTe.TeHeader.SubsystemEnum = enum.Enum {
  unknown = 0,
  native = 1,
  windows_gui = 2,
  windows_cui = 3,
  posix_cui = 7,
  windows_ce_gui = 9,
  efi_application = 10,
  efi_boot_service_driver = 11,
  efi_runtime_driver = 12,
  efi_rom = 13,
  xbox = 14,
  windows_boot_application = 16,
}

function UefiTe.TeHeader:_init(io, parent, root)
  KaitaiStruct._init(self, io)
  self._parent = parent
  self._root = root or self
  self:_read()
end

function UefiTe.TeHeader:_read()
  self.magic = self._io:read_bytes(2)
  if not(self.magic == "\086\090") then
    error("not equal, expected " ..  "\086\090" .. ", but got " .. self.magic)
  end
  self.machine = UefiTe.TeHeader.MachineType(self._io:read_u2le())
  self.num_sections = self._io:read_u1()
  self.subsystem = UefiTe.TeHeader.SubsystemEnum(self._io:read_u1())
  self.stripped_size = self._io:read_u2le()
  self.entry_point_addr = self._io:read_u4le()
  self.base_of_code = self._io:read_u4le()
  self.image_base = self._io:read_u8le()
  self.data_dirs = UefiTe.HeaderDataDirs(self._io, self, self._root)
end


UefiTe.HeaderDataDirs = class.class(KaitaiStruct)

function UefiTe.HeaderDataDirs:_init(io, parent, root)
  KaitaiStruct._init(self, io)
  self._parent = parent
  self._root = root or self
  self:_read()
end

function UefiTe.HeaderDataDirs:_read()
  self.base_relocation_table = UefiTe.DataDir(self._io, self, self._root)
  self.debug = UefiTe.DataDir(self._io, self, self._root)
end


UefiTe.DataDir = class.class(KaitaiStruct)

function UefiTe.DataDir:_init(io, parent, root)
  KaitaiStruct._init(self, io)
  self._parent = parent
  self._root = root or self
  self:_read()
end

function UefiTe.DataDir:_read()
  self.virtual_address = self._io:read_u4le()
  self.size = self._io:read_u4le()
end


UefiTe.Section = class.class(KaitaiStruct)

function UefiTe.Section:_init(io, parent, root)
  KaitaiStruct._init(self, io)
  self._parent = parent
  self._root = root or self
  self:_read()
end

function UefiTe.Section:_read()
  self.name = str_decode.decode(KaitaiStream.bytes_strip_right(self._io:read_bytes(8), 0), "UTF-8")
  self.virtual_size = self._io:read_u4le()
  self.virtual_address = self._io:read_u4le()
  self.size_of_raw_data = self._io:read_u4le()
  self.pointer_to_raw_data = self._io:read_u4le()
  self.pointer_to_relocations = self._io:read_u4le()
  self.pointer_to_linenumbers = self._io:read_u4le()
  self.num_relocations = self._io:read_u2le()
  self.num_linenumbers = self._io:read_u2le()
  self.characteristics = self._io:read_u4le()
end

UefiTe.Section.property.body = {}
function UefiTe.Section.property.body:get()
  if self._m_body ~= nil then
    return self._m_body
  end

  local _pos = self._io:pos()
  self._io:seek(((self.pointer_to_raw_data - self._root.te_hdr.stripped_size) + self._root.te_hdr._io:size()))
  self._m_body = self._io:read_bytes(self.size_of_raw_data)
  self._io:seek(_pos)
  return self._m_body
end