STL files are used to represent simple 3D models, defined using triangular 3D faces.
Initially it was introduced as native format for 3D Systems Stereolithography CAD system, but due to its extreme simplicity, it was adopted by a wide range of 3D modelling, CAD, rapid prototyping and 3D printing applications as the simplest 3D model exchange format.
STL is extremely bare-bones format: there are no complex headers, no texture / color support, no units specifications, no distinct vertex arrays. Whole model is specified as a collection of triangular faces.
There are two versions of the format (text and binary), this spec describes binary version.
This page hosts a formal specification of .stl file format of 3D Systems Stereolithography using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for C++98/STL generated by Kaitai Struct depends on the C++/STL runtime library. You have to install it before you can parse data.
For C++, the easiest way is to clone the runtime library sources and build them along with your project.
Using Kaitai Struct in C++/STL usually consists of 3 steps.
std::istream
). One can open local file for that, or use existing std::string
or char*
buffer.
#include <fstream>
std::ifstream is("path/to/local/file.stl", std::ifstream::binary);
#include <sstream>
std::istringstream is(str);
#include <sstream>
const char buf[] = { ... };
std::string str(buf, sizeof buf);
std::istringstream is(str);
#include "kaitai/kaitaistream.h"
kaitai::kstream ks(&is);
stl_t data(&ks);
After that, one can get various attributes from the structure by invoking getter methods like:
data.header() // => get header
#ifndef STL_H_
#define STL_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <vector>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
/**
* STL files are used to represent simple 3D models, defined using
* triangular 3D faces.
*
* Initially it was introduced as native format for 3D Systems
* Stereolithography CAD system, but due to its extreme simplicity, it
* was adopted by a wide range of 3D modelling, CAD, rapid prototyping
* and 3D printing applications as the simplest 3D model exchange
* format.
*
* STL is extremely bare-bones format: there are no complex headers, no
* texture / color support, no units specifications, no distinct vertex
* arrays. Whole model is specified as a collection of triangular
* faces.
*
* There are two versions of the format (text and binary), this spec
* describes binary version.
*/
class stl_t : public kaitai::kstruct {
public:
class triangle_t;
class vec3d_t;
stl_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, stl_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~stl_t();
/**
* Each STL triangle is defined by its 3 points in 3D space and a
* normal vector, which is generally used to determine where is
* "inside" and "outside" of the model.
*/
class triangle_t : public kaitai::kstruct {
public:
triangle_t(kaitai::kstream* p__io, stl_t* p__parent = 0, stl_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~triangle_t();
private:
vec3d_t* m_normal;
std::vector<vec3d_t*>* m_vertices;
uint16_t m_abr;
stl_t* m__root;
stl_t* m__parent;
public:
vec3d_t* normal() const { return m_normal; }
std::vector<vec3d_t*>* vertices() const { return m_vertices; }
/**
* In theory (per standard), it's "attribute byte count" with
* no other details given on what "attribute" is and what
* should be stored in this field.
*
* In practice, software dealing with STL either expected to
* see 0 here, or uses this 16-bit field per se to store
* additional attributes (such as RGB color of a vertex or
* color index).
*/
uint16_t abr() const { return m_abr; }
stl_t* _root() const { return m__root; }
stl_t* _parent() const { return m__parent; }
};
class vec3d_t : public kaitai::kstruct {
public:
vec3d_t(kaitai::kstream* p__io, stl_t::triangle_t* p__parent = 0, stl_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~vec3d_t();
private:
float m_x;
float m_y;
float m_z;
stl_t* m__root;
stl_t::triangle_t* m__parent;
public:
float x() const { return m_x; }
float y() const { return m_y; }
float z() const { return m_z; }
stl_t* _root() const { return m__root; }
stl_t::triangle_t* _parent() const { return m__parent; }
};
private:
std::string m_header;
uint32_t m_num_triangles;
std::vector<triangle_t*>* m_triangles;
stl_t* m__root;
kaitai::kstruct* m__parent;
public:
std::string header() const { return m_header; }
uint32_t num_triangles() const { return m_num_triangles; }
std::vector<triangle_t*>* triangles() const { return m_triangles; }
stl_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // STL_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "stl.h"
stl_t::stl_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, stl_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_triangles = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void stl_t::_read() {
m_header = m__io->read_bytes(80);
m_num_triangles = m__io->read_u4le();
m_triangles = new std::vector<triangle_t*>();
const int l_triangles = num_triangles();
for (int i = 0; i < l_triangles; i++) {
m_triangles->push_back(new triangle_t(m__io, this, m__root));
}
}
stl_t::~stl_t() {
_clean_up();
}
void stl_t::_clean_up() {
if (m_triangles) {
for (std::vector<triangle_t*>::iterator it = m_triangles->begin(); it != m_triangles->end(); ++it) {
delete *it;
}
delete m_triangles; m_triangles = 0;
}
}
stl_t::triangle_t::triangle_t(kaitai::kstream* p__io, stl_t* p__parent, stl_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_normal = 0;
m_vertices = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void stl_t::triangle_t::_read() {
m_normal = new vec3d_t(m__io, this, m__root);
m_vertices = new std::vector<vec3d_t*>();
const int l_vertices = 3;
for (int i = 0; i < l_vertices; i++) {
m_vertices->push_back(new vec3d_t(m__io, this, m__root));
}
m_abr = m__io->read_u2le();
}
stl_t::triangle_t::~triangle_t() {
_clean_up();
}
void stl_t::triangle_t::_clean_up() {
if (m_normal) {
delete m_normal; m_normal = 0;
}
if (m_vertices) {
for (std::vector<vec3d_t*>::iterator it = m_vertices->begin(); it != m_vertices->end(); ++it) {
delete *it;
}
delete m_vertices; m_vertices = 0;
}
}
stl_t::vec3d_t::vec3d_t(kaitai::kstream* p__io, stl_t::triangle_t* p__parent, stl_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void stl_t::vec3d_t::_read() {
m_x = m__io->read_f4le();
m_y = m__io->read_f4le();
m_z = m__io->read_f4le();
}
stl_t::vec3d_t::~vec3d_t() {
_clean_up();
}
void stl_t::vec3d_t::_clean_up() {
}