Protocol body represents particular payload on transport level (OSI layer 4).
Typically this payload in encapsulated into network level (OSI layer 3) packet, which includes "protocol number" field that would be used to decide what's inside the payload and how to parse it. Thanks to IANA's standardization effort, multiple network level use the same IDs for these payloads named "protocol numbers".
This is effectively a "router" type: it expects to get protocol number as a parameter, and then invokes relevant type parser based on that parameter.
This page hosts a formal specification of protocol_body using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for C++11/STL generated by Kaitai Struct depends on the C++/STL runtime library. You have to install it before you can parse data.
For C++, the easiest way is to clone the runtime library sources and build them along with your project.
Using Kaitai Struct in C++/STL usually consists of 3 steps.
std::istream
). One can open local file for that, or use existing std::string
or char*
buffer.
#include <fstream>
std::ifstream is("path/to/local/file.bin", std::ifstream::binary);
#include <sstream>
std::istringstream is(str);
#include <sstream>
const char buf[] = { ... };
std::string str(buf, sizeof buf);
std::istringstream is(str);
#include "kaitai/kaitaistream.h"
kaitai::kstream ks(&is);
protocol_body_t data(&ks);
After that, one can get various attributes from the structure by invoking getter methods like:
data.body() // => get body
#pragma once
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <memory>
#include "udp_datagram.h"
#include "ipv4_packet.h"
#include "icmp_packet.h"
#include "ipv6_packet.h"
#include "tcp_segment.h"
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class udp_datagram_t;
class ipv4_packet_t;
class icmp_packet_t;
class ipv6_packet_t;
class tcp_segment_t;
/**
* Protocol body represents particular payload on transport level (OSI
* layer 4).
*
* Typically this payload in encapsulated into network level (OSI layer
* 3) packet, which includes "protocol number" field that would be used
* to decide what's inside the payload and how to parse it. Thanks to
* IANA's standardization effort, multiple network level use the same
* IDs for these payloads named "protocol numbers".
*
* This is effectively a "router" type: it expects to get protocol
* number as a parameter, and then invokes relevant type parser based
* on that parameter.
* \sa https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml Source
*/
class protocol_body_t : public kaitai::kstruct {
public:
class no_next_header_t;
class option_hop_by_hop_t;
enum protocol_enum_t {
PROTOCOL_ENUM_HOPOPT = 0,
PROTOCOL_ENUM_ICMP = 1,
PROTOCOL_ENUM_IGMP = 2,
PROTOCOL_ENUM_GGP = 3,
PROTOCOL_ENUM_IPV4 = 4,
PROTOCOL_ENUM_ST = 5,
PROTOCOL_ENUM_TCP = 6,
PROTOCOL_ENUM_CBT = 7,
PROTOCOL_ENUM_EGP = 8,
PROTOCOL_ENUM_IGP = 9,
PROTOCOL_ENUM_BBN_RCC_MON = 10,
PROTOCOL_ENUM_NVP_II = 11,
PROTOCOL_ENUM_PUP = 12,
PROTOCOL_ENUM_ARGUS = 13,
PROTOCOL_ENUM_EMCON = 14,
PROTOCOL_ENUM_XNET = 15,
PROTOCOL_ENUM_CHAOS = 16,
PROTOCOL_ENUM_UDP = 17,
PROTOCOL_ENUM_MUX = 18,
PROTOCOL_ENUM_DCN_MEAS = 19,
PROTOCOL_ENUM_HMP = 20,
PROTOCOL_ENUM_PRM = 21,
PROTOCOL_ENUM_XNS_IDP = 22,
PROTOCOL_ENUM_TRUNK_1 = 23,
PROTOCOL_ENUM_TRUNK_2 = 24,
PROTOCOL_ENUM_LEAF_1 = 25,
PROTOCOL_ENUM_LEAF_2 = 26,
PROTOCOL_ENUM_RDP = 27,
PROTOCOL_ENUM_IRTP = 28,
PROTOCOL_ENUM_ISO_TP4 = 29,
PROTOCOL_ENUM_NETBLT = 30,
PROTOCOL_ENUM_MFE_NSP = 31,
PROTOCOL_ENUM_MERIT_INP = 32,
PROTOCOL_ENUM_DCCP = 33,
PROTOCOL_ENUM_X_3PC = 34,
PROTOCOL_ENUM_IDPR = 35,
PROTOCOL_ENUM_XTP = 36,
PROTOCOL_ENUM_DDP = 37,
PROTOCOL_ENUM_IDPR_CMTP = 38,
PROTOCOL_ENUM_TP_PLUS_PLUS = 39,
PROTOCOL_ENUM_IL = 40,
PROTOCOL_ENUM_IPV6 = 41,
PROTOCOL_ENUM_SDRP = 42,
PROTOCOL_ENUM_IPV6_ROUTE = 43,
PROTOCOL_ENUM_IPV6_FRAG = 44,
PROTOCOL_ENUM_IDRP = 45,
PROTOCOL_ENUM_RSVP = 46,
PROTOCOL_ENUM_GRE = 47,
PROTOCOL_ENUM_DSR = 48,
PROTOCOL_ENUM_BNA = 49,
PROTOCOL_ENUM_ESP = 50,
PROTOCOL_ENUM_AH = 51,
PROTOCOL_ENUM_I_NLSP = 52,
PROTOCOL_ENUM_SWIPE = 53,
PROTOCOL_ENUM_NARP = 54,
PROTOCOL_ENUM_MOBILE = 55,
PROTOCOL_ENUM_TLSP = 56,
PROTOCOL_ENUM_SKIP = 57,
PROTOCOL_ENUM_IPV6_ICMP = 58,
PROTOCOL_ENUM_IPV6_NONXT = 59,
PROTOCOL_ENUM_IPV6_OPTS = 60,
PROTOCOL_ENUM_ANY_HOST_INTERNAL_PROTOCOL = 61,
PROTOCOL_ENUM_CFTP = 62,
PROTOCOL_ENUM_ANY_LOCAL_NETWORK = 63,
PROTOCOL_ENUM_SAT_EXPAK = 64,
PROTOCOL_ENUM_KRYPTOLAN = 65,
PROTOCOL_ENUM_RVD = 66,
PROTOCOL_ENUM_IPPC = 67,
PROTOCOL_ENUM_ANY_DISTRIBUTED_FILE_SYSTEM = 68,
PROTOCOL_ENUM_SAT_MON = 69,
PROTOCOL_ENUM_VISA = 70,
PROTOCOL_ENUM_IPCV = 71,
PROTOCOL_ENUM_CPNX = 72,
PROTOCOL_ENUM_CPHB = 73,
PROTOCOL_ENUM_WSN = 74,
PROTOCOL_ENUM_PVP = 75,
PROTOCOL_ENUM_BR_SAT_MON = 76,
PROTOCOL_ENUM_SUN_ND = 77,
PROTOCOL_ENUM_WB_MON = 78,
PROTOCOL_ENUM_WB_EXPAK = 79,
PROTOCOL_ENUM_ISO_IP = 80,
PROTOCOL_ENUM_VMTP = 81,
PROTOCOL_ENUM_SECURE_VMTP = 82,
PROTOCOL_ENUM_VINES = 83,
PROTOCOL_ENUM_TTP_OR_IPTM = 84,
PROTOCOL_ENUM_NSFNET_IGP = 85,
PROTOCOL_ENUM_DGP = 86,
PROTOCOL_ENUM_TCF = 87,
PROTOCOL_ENUM_EIGRP = 88,
PROTOCOL_ENUM_OSPFIGP = 89,
PROTOCOL_ENUM_SPRITE_RPC = 90,
PROTOCOL_ENUM_LARP = 91,
PROTOCOL_ENUM_MTP = 92,
PROTOCOL_ENUM_AX_25 = 93,
PROTOCOL_ENUM_IPIP = 94,
PROTOCOL_ENUM_MICP = 95,
PROTOCOL_ENUM_SCC_SP = 96,
PROTOCOL_ENUM_ETHERIP = 97,
PROTOCOL_ENUM_ENCAP = 98,
PROTOCOL_ENUM_ANY_PRIVATE_ENCRYPTION_SCHEME = 99,
PROTOCOL_ENUM_GMTP = 100,
PROTOCOL_ENUM_IFMP = 101,
PROTOCOL_ENUM_PNNI = 102,
PROTOCOL_ENUM_PIM = 103,
PROTOCOL_ENUM_ARIS = 104,
PROTOCOL_ENUM_SCPS = 105,
PROTOCOL_ENUM_QNX = 106,
PROTOCOL_ENUM_A_N = 107,
PROTOCOL_ENUM_IPCOMP = 108,
PROTOCOL_ENUM_SNP = 109,
PROTOCOL_ENUM_COMPAQ_PEER = 110,
PROTOCOL_ENUM_IPX_IN_IP = 111,
PROTOCOL_ENUM_VRRP = 112,
PROTOCOL_ENUM_PGM = 113,
PROTOCOL_ENUM_ANY_0_HOP = 114,
PROTOCOL_ENUM_L2TP = 115,
PROTOCOL_ENUM_DDX = 116,
PROTOCOL_ENUM_IATP = 117,
PROTOCOL_ENUM_STP = 118,
PROTOCOL_ENUM_SRP = 119,
PROTOCOL_ENUM_UTI = 120,
PROTOCOL_ENUM_SMP = 121,
PROTOCOL_ENUM_SM = 122,
PROTOCOL_ENUM_PTP = 123,
PROTOCOL_ENUM_ISIS_OVER_IPV4 = 124,
PROTOCOL_ENUM_FIRE = 125,
PROTOCOL_ENUM_CRTP = 126,
PROTOCOL_ENUM_CRUDP = 127,
PROTOCOL_ENUM_SSCOPMCE = 128,
PROTOCOL_ENUM_IPLT = 129,
PROTOCOL_ENUM_SPS = 130,
PROTOCOL_ENUM_PIPE = 131,
PROTOCOL_ENUM_SCTP = 132,
PROTOCOL_ENUM_FC = 133,
PROTOCOL_ENUM_RSVP_E2E_IGNORE = 134,
PROTOCOL_ENUM_MOBILITY_HEADER = 135,
PROTOCOL_ENUM_UDPLITE = 136,
PROTOCOL_ENUM_MPLS_IN_IP = 137,
PROTOCOL_ENUM_MANET = 138,
PROTOCOL_ENUM_HIP = 139,
PROTOCOL_ENUM_SHIM6 = 140,
PROTOCOL_ENUM_WESP = 141,
PROTOCOL_ENUM_ROHC = 142,
PROTOCOL_ENUM_RESERVED_255 = 255
};
protocol_body_t(uint8_t p_protocol_num, kaitai::kstream* p__io, kaitai::kstruct* p__parent = nullptr, protocol_body_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~protocol_body_t();
/**
* Dummy type for IPv6 "no next header" type, which signifies end of headers chain.
*/
class no_next_header_t : public kaitai::kstruct {
public:
no_next_header_t(kaitai::kstream* p__io, protocol_body_t* p__parent = nullptr, protocol_body_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~no_next_header_t();
private:
protocol_body_t* m__root;
protocol_body_t* m__parent;
public:
protocol_body_t* _root() const { return m__root; }
protocol_body_t* _parent() const { return m__parent; }
};
class option_hop_by_hop_t : public kaitai::kstruct {
public:
option_hop_by_hop_t(kaitai::kstream* p__io, protocol_body_t* p__parent = nullptr, protocol_body_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~option_hop_by_hop_t();
private:
uint8_t m_next_header_type;
uint8_t m_hdr_ext_len;
std::string m_body;
std::unique_ptr<protocol_body_t> m_next_header;
protocol_body_t* m__root;
protocol_body_t* m__parent;
public:
uint8_t next_header_type() const { return m_next_header_type; }
uint8_t hdr_ext_len() const { return m_hdr_ext_len; }
std::string body() const { return m_body; }
protocol_body_t* next_header() const { return m_next_header.get(); }
protocol_body_t* _root() const { return m__root; }
protocol_body_t* _parent() const { return m__parent; }
};
private:
bool f_protocol;
protocol_enum_t m_protocol;
public:
protocol_enum_t protocol();
private:
std::unique_ptr<kaitai::kstruct> m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
uint8_t m_protocol_num;
protocol_body_t* m__root;
kaitai::kstruct* m__parent;
public:
kaitai::kstruct* body() const { return m_body.get(); }
/**
* Protocol number as an integer.
*/
uint8_t protocol_num() const { return m_protocol_num; }
protocol_body_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "protocol_body.h"
protocol_body_t::protocol_body_t(uint8_t p_protocol_num, kaitai::kstream* p__io, kaitai::kstruct* p__parent, protocol_body_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_protocol_num = p_protocol_num;
f_protocol = false;
_read();
}
void protocol_body_t::_read() {
n_body = true;
switch (protocol()) {
case protocol_body_t::PROTOCOL_ENUM_IPV6_NONXT: {
n_body = false;
m_body = std::unique_ptr<no_next_header_t>(new no_next_header_t(m__io, this, m__root));
break;
}
case protocol_body_t::PROTOCOL_ENUM_IPV4: {
n_body = false;
m_body = std::unique_ptr<ipv4_packet_t>(new ipv4_packet_t(m__io));
break;
}
case protocol_body_t::PROTOCOL_ENUM_UDP: {
n_body = false;
m_body = std::unique_ptr<udp_datagram_t>(new udp_datagram_t(m__io));
break;
}
case protocol_body_t::PROTOCOL_ENUM_ICMP: {
n_body = false;
m_body = std::unique_ptr<icmp_packet_t>(new icmp_packet_t(m__io));
break;
}
case protocol_body_t::PROTOCOL_ENUM_HOPOPT: {
n_body = false;
m_body = std::unique_ptr<option_hop_by_hop_t>(new option_hop_by_hop_t(m__io, this, m__root));
break;
}
case protocol_body_t::PROTOCOL_ENUM_IPV6: {
n_body = false;
m_body = std::unique_ptr<ipv6_packet_t>(new ipv6_packet_t(m__io));
break;
}
case protocol_body_t::PROTOCOL_ENUM_TCP: {
n_body = false;
m_body = std::unique_ptr<tcp_segment_t>(new tcp_segment_t(m__io));
break;
}
}
}
protocol_body_t::~protocol_body_t() {
_clean_up();
}
void protocol_body_t::_clean_up() {
if (!n_body) {
}
}
protocol_body_t::no_next_header_t::no_next_header_t(kaitai::kstream* p__io, protocol_body_t* p__parent, protocol_body_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
_read();
}
void protocol_body_t::no_next_header_t::_read() {
}
protocol_body_t::no_next_header_t::~no_next_header_t() {
_clean_up();
}
void protocol_body_t::no_next_header_t::_clean_up() {
}
protocol_body_t::option_hop_by_hop_t::option_hop_by_hop_t(kaitai::kstream* p__io, protocol_body_t* p__parent, protocol_body_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_next_header = nullptr;
_read();
}
void protocol_body_t::option_hop_by_hop_t::_read() {
m_next_header_type = m__io->read_u1();
m_hdr_ext_len = m__io->read_u1();
m_body = m__io->read_bytes(((hdr_ext_len() > 0) ? ((hdr_ext_len() - 1)) : (1)));
m_next_header = std::unique_ptr<protocol_body_t>(new protocol_body_t(next_header_type(), m__io));
}
protocol_body_t::option_hop_by_hop_t::~option_hop_by_hop_t() {
_clean_up();
}
void protocol_body_t::option_hop_by_hop_t::_clean_up() {
}
protocol_body_t::protocol_enum_t protocol_body_t::protocol() {
if (f_protocol)
return m_protocol;
m_protocol = static_cast<protocol_body_t::protocol_enum_t>(protocol_num());
f_protocol = true;
return m_protocol;
}