The new uImage format allows more flexibility in handling images of various types (kernel, ramdisk, etc.), it also enhances integrity protection of images with sha1 and md5 checksums.
This page hosts a formal specification of U-Boot Image wrapper using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for C++11/STL generated by Kaitai Struct depends on the C++/STL runtime library. You have to install it before you can parse data.
For C++, the easiest way is to clone the runtime library sources and build them along with your project.
Using Kaitai Struct in C++/STL usually consists of 3 steps.
std::istream
). One can open local file for that, or use existing std::string
or char*
buffer.
#include <fstream>
std::ifstream is("path/to/local/file.bin", std::ifstream::binary);
#include <sstream>
std::istringstream is(str);
#include <sstream>
const char buf[] = { ... };
std::string str(buf, sizeof buf);
std::istringstream is(str);
#include "kaitai/kaitaistream.h"
kaitai::kstream ks(&is);
uimage_t data(&ks);
After that, one can get various attributes from the structure by invoking getter methods like:
data.header() // => get header
#pragma once
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <memory>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
/**
* The new uImage format allows more flexibility in handling images of various
* types (kernel, ramdisk, etc.), it also enhances integrity protection of images
* with sha1 and md5 checksums.
* \sa https://source.denx.de/u-boot/u-boot/-/raw/e4dba4ba6f/include/image.h Source
*/
class uimage_t : public kaitai::kstruct {
public:
class uheader_t;
enum uimage_os_t {
UIMAGE_OS_INVALID = 0,
UIMAGE_OS_OPENBSD = 1,
UIMAGE_OS_NETBSD = 2,
UIMAGE_OS_FREEBSD = 3,
UIMAGE_OS_BSD4_4 = 4,
UIMAGE_OS_LINUX = 5,
UIMAGE_OS_SVR4 = 6,
UIMAGE_OS_ESIX = 7,
UIMAGE_OS_SOLARIS = 8,
UIMAGE_OS_IRIX = 9,
UIMAGE_OS_SCO = 10,
UIMAGE_OS_DELL = 11,
UIMAGE_OS_NCR = 12,
UIMAGE_OS_LYNXOS = 13,
UIMAGE_OS_VXWORKS = 14,
UIMAGE_OS_PSOS = 15,
UIMAGE_OS_QNX = 16,
UIMAGE_OS_U_BOOT = 17,
UIMAGE_OS_RTEMS = 18,
UIMAGE_OS_ARTOS = 19,
UIMAGE_OS_UNITY = 20,
UIMAGE_OS_INTEGRITY = 21,
UIMAGE_OS_OSE = 22,
UIMAGE_OS_PLAN9 = 23,
UIMAGE_OS_OPENRTOS = 24,
UIMAGE_OS_ARM_TRUSTED_FIRMWARE = 25,
UIMAGE_OS_TEE = 26,
UIMAGE_OS_OPENSBI = 27,
UIMAGE_OS_EFI = 28
};
enum uimage_arch_t {
UIMAGE_ARCH_INVALID = 0,
UIMAGE_ARCH_ALPHA = 1,
UIMAGE_ARCH_ARM = 2,
UIMAGE_ARCH_I386 = 3,
UIMAGE_ARCH_IA64 = 4,
UIMAGE_ARCH_MIPS = 5,
UIMAGE_ARCH_MIPS64 = 6,
UIMAGE_ARCH_PPC = 7,
UIMAGE_ARCH_S390 = 8,
UIMAGE_ARCH_SH = 9,
UIMAGE_ARCH_SPARC = 10,
UIMAGE_ARCH_SPARC64 = 11,
UIMAGE_ARCH_M68K = 12,
UIMAGE_ARCH_NIOS = 13,
UIMAGE_ARCH_MICROBLAZE = 14,
UIMAGE_ARCH_NIOS2 = 15,
UIMAGE_ARCH_BLACKFIN = 16,
UIMAGE_ARCH_AVR32 = 17,
UIMAGE_ARCH_ST200 = 18,
UIMAGE_ARCH_SANDBOX = 19,
UIMAGE_ARCH_NDS32 = 20,
UIMAGE_ARCH_OPENRISC = 21,
UIMAGE_ARCH_ARM64 = 22,
UIMAGE_ARCH_ARC = 23,
UIMAGE_ARCH_X86_64 = 24,
UIMAGE_ARCH_XTENSA = 25,
UIMAGE_ARCH_RISCV = 26
};
enum uimage_comp_t {
UIMAGE_COMP_NONE = 0,
UIMAGE_COMP_GZIP = 1,
UIMAGE_COMP_BZIP2 = 2,
UIMAGE_COMP_LZMA = 3,
UIMAGE_COMP_LZO = 4,
UIMAGE_COMP_LZ4 = 5,
UIMAGE_COMP_ZSTD = 6
};
enum uimage_type_t {
UIMAGE_TYPE_INVALID = 0,
UIMAGE_TYPE_STANDALONE = 1,
UIMAGE_TYPE_KERNEL = 2,
UIMAGE_TYPE_RAMDISK = 3,
UIMAGE_TYPE_MULTI = 4,
UIMAGE_TYPE_FIRMWARE = 5,
UIMAGE_TYPE_SCRIPT = 6,
UIMAGE_TYPE_FILESYSTEM = 7,
UIMAGE_TYPE_FLATDT = 8,
UIMAGE_TYPE_KWBIMAGE = 9,
UIMAGE_TYPE_IMXIMAGE = 10,
UIMAGE_TYPE_UBLIMAGE = 11,
UIMAGE_TYPE_OMAPIMAGE = 12,
UIMAGE_TYPE_AISIMAGE = 13,
UIMAGE_TYPE_KERNEL_NOLOAD = 14,
UIMAGE_TYPE_PBLIMAGE = 15,
UIMAGE_TYPE_MXSIMAGE = 16,
UIMAGE_TYPE_GPIMAGE = 17,
UIMAGE_TYPE_ATMELIMAGE = 18,
UIMAGE_TYPE_SOCFPGAIMAGE = 19,
UIMAGE_TYPE_X86_SETUP = 20,
UIMAGE_TYPE_LPC32XXIMAGE = 21,
UIMAGE_TYPE_LOADABLE = 22,
UIMAGE_TYPE_RKIMAGE = 23,
UIMAGE_TYPE_RKSD = 24,
UIMAGE_TYPE_RKSPI = 25,
UIMAGE_TYPE_ZYNQIMAGE = 26,
UIMAGE_TYPE_ZYNQMPIMAGE = 27,
UIMAGE_TYPE_ZYNQMPBIF = 28,
UIMAGE_TYPE_FPGA = 29,
UIMAGE_TYPE_VYBRIDIMAGE = 30,
UIMAGE_TYPE_TEE = 31,
UIMAGE_TYPE_FIRMWARE_IVT = 32,
UIMAGE_TYPE_PMMC = 33,
UIMAGE_TYPE_STM32IMAGE = 34,
UIMAGE_TYPE_SOCFPGAIMAGE_V1 = 35,
UIMAGE_TYPE_MTKIMAGE = 36,
UIMAGE_TYPE_IMX8MIMAGE = 37,
UIMAGE_TYPE_IMX8IMAGE = 38,
UIMAGE_TYPE_COPRO = 39,
UIMAGE_TYPE_SUNXI_EGON = 40
};
uimage_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = nullptr, uimage_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~uimage_t();
class uheader_t : public kaitai::kstruct {
public:
uheader_t(kaitai::kstream* p__io, uimage_t* p__parent = nullptr, uimage_t* p__root = nullptr);
private:
void _read();
void _clean_up();
public:
~uheader_t();
private:
std::string m_magic;
uint32_t m_header_crc;
uint32_t m_timestamp;
uint32_t m_len_image;
uint32_t m_load_address;
uint32_t m_entry_address;
uint32_t m_data_crc;
uimage_os_t m_os_type;
uimage_arch_t m_architecture;
uimage_type_t m_image_type;
uimage_comp_t m_compression_type;
std::string m_name;
uimage_t* m__root;
uimage_t* m__parent;
public:
std::string magic() const { return m_magic; }
uint32_t header_crc() const { return m_header_crc; }
uint32_t timestamp() const { return m_timestamp; }
uint32_t len_image() const { return m_len_image; }
uint32_t load_address() const { return m_load_address; }
uint32_t entry_address() const { return m_entry_address; }
uint32_t data_crc() const { return m_data_crc; }
uimage_os_t os_type() const { return m_os_type; }
uimage_arch_t architecture() const { return m_architecture; }
uimage_type_t image_type() const { return m_image_type; }
uimage_comp_t compression_type() const { return m_compression_type; }
std::string name() const { return m_name; }
uimage_t* _root() const { return m__root; }
uimage_t* _parent() const { return m__parent; }
};
private:
std::unique_ptr<uheader_t> m_header;
std::string m_data;
uimage_t* m__root;
kaitai::kstruct* m__parent;
public:
uheader_t* header() const { return m_header.get(); }
std::string data() const { return m_data; }
uimage_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "uimage.h"
#include "kaitai/exceptions.h"
uimage_t::uimage_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, uimage_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_header = nullptr;
_read();
}
void uimage_t::_read() {
m_header = std::unique_ptr<uheader_t>(new uheader_t(m__io, this, m__root));
m_data = m__io->read_bytes(header()->len_image());
}
uimage_t::~uimage_t() {
_clean_up();
}
void uimage_t::_clean_up() {
}
uimage_t::uheader_t::uheader_t(kaitai::kstream* p__io, uimage_t* p__parent, uimage_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
_read();
}
void uimage_t::uheader_t::_read() {
m_magic = m__io->read_bytes(4);
if (!(magic() == std::string("\x27\x05\x19\x56", 4))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\x27\x05\x19\x56", 4), magic(), _io(), std::string("/types/uheader/seq/0"));
}
m_header_crc = m__io->read_u4be();
m_timestamp = m__io->read_u4be();
m_len_image = m__io->read_u4be();
m_load_address = m__io->read_u4be();
m_entry_address = m__io->read_u4be();
m_data_crc = m__io->read_u4be();
m_os_type = static_cast<uimage_t::uimage_os_t>(m__io->read_u1());
m_architecture = static_cast<uimage_t::uimage_arch_t>(m__io->read_u1());
m_image_type = static_cast<uimage_t::uimage_type_t>(m__io->read_u1());
m_compression_type = static_cast<uimage_t::uimage_comp_t>(m__io->read_u1());
m_name = kaitai::kstream::bytes_to_str(kaitai::kstream::bytes_terminate(m__io->read_bytes(32), 0, false), std::string("UTF-8"));
}
uimage_t::uheader_t::~uheader_t() {
_clean_up();
}
void uimage_t::uheader_t::_clean_up() {
}