UTF-8 is a popular character encoding scheme that allows to represent strings as sequence of code points defined in Unicode standard. Its features are:
WARNING: For the vast majority of practical purposes of format
definitions in Kaitai Struct, you'd likely NOT want to use this and
rather just use type: str
with encoding: utf-8
. That will use
native string implementations, which are most likely more efficient
and will give you native language strings, rather than an array of
individual codepoints. This format definition is provided mostly
for educational / research purposes.
This page hosts a formal specification of UTF-8-encoded string using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.
All parsing code for Java generated by Kaitai Struct depends on the Java runtime library. You have to install it before you can parse data.
The Java runtime library is published in the Maven Central Repository. Refer to the artifact page for instructions how to add it into your project with the build tool that you use.
Parse a local file and get structure in memory:
Utf8String data = Utf8String.fromFile("path/to/local/file.txt");
Or parse structure from a byte array:
byte[] someArray = new byte[] { ... };
Utf8String data = new Utf8String(new ByteBufferKaitaiStream(someArray));
After that, one can get various attributes from the structure by invoking getter methods like:
data.codepoints() // => get codepoints
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
import io.kaitai.struct.ByteBufferKaitaiStream;
import io.kaitai.struct.KaitaiStruct;
import io.kaitai.struct.KaitaiStream;
import java.io.IOException;
import java.util.ArrayList;
/**
* UTF-8 is a popular character encoding scheme that allows to
* represent strings as sequence of code points defined in Unicode
* standard. Its features are:
*
* * variable width (i.e. one code point might be represented by 1 to 4
* bytes)
* * backward compatiblity with ASCII
* * basic validity checking (and thus distinguishing from other legacy
* 8-bit encodings)
* * maintaining sort order of codepoints if sorted as a byte array
*
* WARNING: For the vast majority of practical purposes of format
* definitions in Kaitai Struct, you'd likely NOT want to use this and
* rather just use `type: str` with `encoding: utf-8`. That will use
* native string implementations, which are most likely more efficient
* and will give you native language strings, rather than an array of
* individual codepoints. This format definition is provided mostly
* for educational / research purposes.
*/
public class Utf8String extends KaitaiStruct {
public static Utf8String fromFile(String fileName) throws IOException {
return new Utf8String(new ByteBufferKaitaiStream(fileName));
}
public Utf8String(KaitaiStream _io) {
this(_io, null, null);
}
public Utf8String(KaitaiStream _io, KaitaiStruct _parent) {
this(_io, _parent, null);
}
public Utf8String(KaitaiStream _io, KaitaiStruct _parent, Utf8String _root) {
super(_io);
this._parent = _parent;
this._root = _root == null ? this : _root;
_read();
}
private void _read() {
this.codepoints = new ArrayList<Utf8Codepoint>();
{
int i = 0;
while (!this._io.isEof()) {
this.codepoints.add(new Utf8Codepoint(this._io, this, _root, _io().pos()));
i++;
}
}
}
public static class Utf8Codepoint extends KaitaiStruct {
public Utf8Codepoint(KaitaiStream _io, long ofs) {
this(_io, null, null, ofs);
}
public Utf8Codepoint(KaitaiStream _io, Utf8String _parent, long ofs) {
this(_io, _parent, null, ofs);
}
public Utf8Codepoint(KaitaiStream _io, Utf8String _parent, Utf8String _root, long ofs) {
super(_io);
this._parent = _parent;
this._root = _root;
this.ofs = ofs;
_read();
}
private void _read() {
this.bytes = this._io.readBytes(lenBytes());
}
private Integer raw1;
public Integer raw1() {
if (this.raw1 != null)
return this.raw1;
if (lenBytes() >= 2) {
int _tmp = (int) ((bytes()[1] & 63));
this.raw1 = _tmp;
}
return this.raw1;
}
private Integer lenBytes;
public Integer lenBytes() {
if (this.lenBytes != null)
return this.lenBytes;
int _tmp = (int) (((byte0() & 128) == 0 ? 1 : ((byte0() & 224) == 192 ? 2 : ((byte0() & 240) == 224 ? 3 : ((byte0() & 248) == 240 ? 4 : -1)))));
this.lenBytes = _tmp;
return this.lenBytes;
}
private Integer raw3;
public Integer raw3() {
if (this.raw3 != null)
return this.raw3;
if (lenBytes() >= 4) {
int _tmp = (int) ((bytes()[3] & 63));
this.raw3 = _tmp;
}
return this.raw3;
}
private Integer valueAsInt;
public Integer valueAsInt() {
if (this.valueAsInt != null)
return this.valueAsInt;
int _tmp = (int) ((lenBytes() == 1 ? raw0() : (lenBytes() == 2 ? ((raw0() << 6) | raw1()) : (lenBytes() == 3 ? (((raw0() << 12) | (raw1() << 6)) | raw2()) : (lenBytes() == 4 ? ((((raw0() << 18) | (raw1() << 12)) | (raw2() << 6)) | raw3()) : -1)))));
this.valueAsInt = _tmp;
return this.valueAsInt;
}
private Integer raw0;
public Integer raw0() {
if (this.raw0 != null)
return this.raw0;
int _tmp = (int) ((bytes()[0] & (lenBytes() == 1 ? 127 : (lenBytes() == 2 ? 31 : (lenBytes() == 3 ? 15 : (lenBytes() == 4 ? 7 : 0))))));
this.raw0 = _tmp;
return this.raw0;
}
private Integer byte0;
public Integer byte0() {
if (this.byte0 != null)
return this.byte0;
long _pos = this._io.pos();
this._io.seek(ofs());
this.byte0 = this._io.readU1();
this._io.seek(_pos);
return this.byte0;
}
private Integer raw2;
public Integer raw2() {
if (this.raw2 != null)
return this.raw2;
if (lenBytes() >= 3) {
int _tmp = (int) ((bytes()[2] & 63));
this.raw2 = _tmp;
}
return this.raw2;
}
private byte[] bytes;
private long ofs;
private Utf8String _root;
private Utf8String _parent;
public byte[] bytes() { return bytes; }
public long ofs() { return ofs; }
public Utf8String _root() { return _root; }
public Utf8String _parent() { return _parent; }
}
private ArrayList<Utf8Codepoint> codepoints;
private Utf8String _root;
private KaitaiStruct _parent;
public ArrayList<Utf8Codepoint> codepoints() { return codepoints; }
public Utf8String _root() { return _root; }
public KaitaiStruct _parent() { return _parent; }
}