Compressed Macintosh resource data, Apple `'dcmp' (0)` format: C# parsing library

Compressed resource data in 'dcmp' (0) format, as stored in compressed resources with header type 8 and decompressor ID 0.

The 'dcmp' (0) decompressor resource is included in the System file of System 7.0 and later. This compression format is used for most compressed resources in System 7.0's files. This decompressor is also included with and used by some other Apple applications, such as ResEdit.

This compression format supports some basic general-purpose compression schemes, including backreferences to previous data, run-length encoding, and delta encoding. It also includes some types of compression tailored specifically to Mac OS resources, including a set of single-byte codes that correspond to entries in a hard-coded lookup table, and a specialized kind of delta encoding for segment loader jump tables.

Almost all parts of this compression format operate on units of 2 or 4 bytes. As a result, it is nearly impossible to store data with an odd length in this format. To work around this limitation, odd-length resources are padded with an extra byte before compressing them with this format. This extra byte is ignored after decompression, as the real (odd) length of the resource is stored in the compressed resource header.

The 'dcmp' (1) compression format (see dcmp_1.ksy) is very similar to this format, with the main difference that it operates mostly on single bytes rather than two-byte units.

Application

Mac OS

KS implementation details

License: MIT
Minimal Kaitai Struct required: 0.8

This page hosts a formal specification of Compressed Macintosh resource data, Apple `'dcmp' (0)` format using Kaitai Struct. This specification can be automatically translated into a variety of programming languages to get a parsing library.

Usage

Runtime library

All parsing code for C# generated by Kaitai Struct depends on the C# runtime library. You have to install it before you can parse data.

The C# runtime library is available in the NuGet Gallery. Installation instructions can also be found there.

Code

Parse a local file and get structure in memory:

var data = Dcmp0.FromFile("path/to/local/file.dcmp_0");

Or parse structure from a byte array:

byte[] someArray = new byte[] { ... };
var data = new Dcmp0(new KaitaiStream(someArray));

After that, one can get various attributes from the structure by accessing properties like:

data.Chunks // => The sequence of chunks that make up the compressed data.

C# source code to parse Compressed Macintosh resource data, Apple `'dcmp' (0)` format

Dcmp0.cs

// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild

using System.Collections.Generic;

namespace Kaitai
{

    /// <summary>
    /// Compressed resource data in `'dcmp' (0)` format,
    /// as stored in compressed resources with header type `8` and decompressor ID `0`.
    /// 
    /// The `'dcmp' (0)` decompressor resource is included in the System file of System 7.0 and later.
    /// This compression format is used for most compressed resources in System 7.0's files.
    /// This decompressor is also included with and used by some other Apple applications,
    /// such as ResEdit.
    /// 
    /// This compression format supports some basic general-purpose compression schemes,
    /// including backreferences to previous data,
    /// run-length encoding,
    /// and delta encoding.
    /// It also includes some types of compression tailored specifically to Mac OS resources,
    /// including a set of single-byte codes that correspond to entries in a hard-coded lookup table,
    /// and a specialized kind of delta encoding for segment loader jump tables.
    /// 
    /// Almost all parts of this compression format operate on units of 2 or 4 bytes.
    /// As a result,
    /// it is nearly impossible to store data with an odd length in this format.
    /// To work around this limitation,
    /// odd-length resources are padded with an extra byte before compressing them with this format.
    /// This extra byte is ignored after decompression,
    /// as the real (odd) length of the resource is stored in the compressed resource header.
    /// 
    /// The `'dcmp' (1)` compression format (see dcmp_1.ksy) is very similar to this format,
    /// with the main difference that it operates mostly on single bytes rather than two-byte units.
    /// </summary>
    /// <remarks>
    /// Reference: <a href="https://github.com/dgelessus/python-rsrcfork/tree/master/rsrcfork/compress/dcmp0.py">Source</a>
    /// </remarks>
    public partial class Dcmp0 : KaitaiStruct
    {
        public static Dcmp0 FromFile(string fileName)
        {
            return new Dcmp0(new KaitaiStream(fileName));
        }

        public Dcmp0(KaitaiStream p__io, KaitaiStruct p__parent = null, Dcmp0 p__root = null) : base(p__io)
        {
            m_parent = p__parent;
            m_root = p__root ?? this;
            _read();
        }
        private void _read()
        {
            _chunks = new List<Chunk>();
            {
                var i = 0;
                Chunk M_;
                do {
                    M_ = new Chunk(m_io, this, m_root);
                    _chunks.Add(M_);
                    i++;
                } while (!(M_.Tag == 255));
            }
        }

        /// <summary>
        /// A single chunk of compressed data.
        /// Each chunk in the compressed data expands to a sequence of bytes in the uncompressed data,
        /// except when `tag == 0xff`,
        /// which marks the end of the data and does not correspond to any bytes in the uncompressed data.
        /// 
        /// Most chunks are stateless and always expand to the same data,
        /// regardless of where the chunk appears in the sequence.
        /// However,
        /// some chunks affect the behavior of future chunks,
        /// or expand to different data depending on which chunks came before them.
        /// </summary>
        public partial class Chunk : KaitaiStruct
        {
            public static Chunk FromFile(string fileName)
            {
                return new Chunk(new KaitaiStream(fileName));
            }


            public enum TagKind
            {
                Invalid = -1,
                Literal = 0,
                Backreference = 1,
                TableLookup = 2,
                Extended = 3,
                End = 4,
            }
            public Chunk(KaitaiStream p__io, Dcmp0 p__parent = null, Dcmp0 p__root = null) : base(p__io)
            {
                m_parent = p__parent;
                m_root = p__root;
                _read();
            }
            private void _read()
            {
                _tag = m_io.ReadU1();
                switch (( ((Tag >= 0) && (Tag <= 31))  ? TagKind.Literal : ( ((Tag >= 32) && (Tag <= 74))  ? TagKind.Backreference : ( ((Tag >= 75) && (Tag <= 253))  ? TagKind.TableLookup : (Tag == 254 ? TagKind.Extended : (Tag == 255 ? TagKind.End : TagKind.Invalid)))))) {
                case TagKind.Extended: {
                    _body = new ExtendedBody(m_io, this, m_root);
                    break;
                }
                case TagKind.Literal: {
                    _body = new LiteralBody(Tag, m_io, this, m_root);
                    break;
                }
                case TagKind.End: {
                    _body = new EndBody(m_io, this, m_root);
                    break;
                }
                case TagKind.TableLookup: {
                    _body = new TableLookupBody(Tag, m_io, this, m_root);
                    break;
                }
                case TagKind.Backreference: {
                    _body = new BackreferenceBody(Tag, m_io, this, m_root);
                    break;
                }
                }
            }

            /// <summary>
            /// The body of a literal data chunk.
            /// 
            /// The data that this chunk expands to is stored literally in the body (`literal`).
            /// Optionally,
            /// the literal data may also be stored for use by future backreference chunks (`do_store`).
            /// 
            /// The length of the literal data is stored as a number of two-byte units.
            /// This means that the literal data always has an even length in bytes.
            /// </summary>
            public partial class LiteralBody : KaitaiStruct
            {
                public LiteralBody(byte p_tag, KaitaiStream p__io, Dcmp0.Chunk p__parent = null, Dcmp0 p__root = null) : base(p__io)
                {
                    m_parent = p__parent;
                    m_root = p__root;
                    _tag = p_tag;
                    f_doStore = false;
                    f_lenLiteralDiv2 = false;
                    f_lenLiteral = false;
                    f_lenLiteralDiv2InTag = false;
                    f_isLenLiteralDiv2Separate = false;
                    _read();
                }
                private void _read()
                {
                    if (IsLenLiteralDiv2Separate) {
                        _lenLiteralDiv2Separate = m_io.ReadU1();
                    }
                    _literal = m_io.ReadBytes(LenLiteral);
                }
                private bool f_doStore;
                private bool _doStore;

                /// <summary>
                /// Whether this literal should be stored for use by future backreference chunks.
                /// 
                /// See the documentation of the `backreference_body` type for details about backreference chunks.
                /// </summary>
                public bool DoStore
                {
                    get
                    {
                        if (f_doStore)
                            return _doStore;
                        _doStore = (bool) ((Tag & 16) != 0);
                        f_doStore = true;
                        return _doStore;
                    }
                }
                private bool f_lenLiteralDiv2;
                private int _lenLiteralDiv2;

                /// <summary>
                /// The length of the literal data,
                /// in two-byte units.
                /// 
                /// In practice,
                /// this value is always greater than zero,
                /// as there is no use in storing a zero-length literal.
                /// </summary>
                public int LenLiteralDiv2
                {
                    get
                    {
                        if (f_lenLiteralDiv2)
                            return _lenLiteralDiv2;
                        _lenLiteralDiv2 = (int) ((IsLenLiteralDiv2Separate ? LenLiteralDiv2Separate : LenLiteralDiv2InTag));
                        f_lenLiteralDiv2 = true;
                        return _lenLiteralDiv2;
                    }
                }
                private bool f_lenLiteral;
                private int _lenLiteral;

                /// <summary>
                /// The length of the literal data,
                /// in bytes.
                /// </summary>
                public int LenLiteral
                {
                    get
                    {
                        if (f_lenLiteral)
                            return _lenLiteral;
                        _lenLiteral = (int) ((LenLiteralDiv2 * 2));
                        f_lenLiteral = true;
                        return _lenLiteral;
                    }
                }
                private bool f_lenLiteralDiv2InTag;
                private int _lenLiteralDiv2InTag;

                /// <summary>
                /// The part of the tag byte that indicates the length of the literal data,
                /// in two-byte units.
                /// If this value is 0,
                /// the length is stored in a separate byte after the tag byte and before the literal data.
                /// </summary>
                public int LenLiteralDiv2InTag
                {
                    get
                    {
                        if (f_lenLiteralDiv2InTag)
                            return _lenLiteralDiv2InTag;
                        _lenLiteralDiv2InTag = (int) ((Tag & 15));
                        f_lenLiteralDiv2InTag = true;
                        return _lenLiteralDiv2InTag;
                    }
                }
                private bool f_isLenLiteralDiv2Separate;
                private bool _isLenLiteralDiv2Separate;

                /// <summary>
                /// Whether the length of the literal is stored separately from the tag.
                /// </summary>
                public bool IsLenLiteralDiv2Separate
                {
                    get
                    {
                        if (f_isLenLiteralDiv2Separate)
                            return _isLenLiteralDiv2Separate;
                        _isLenLiteralDiv2Separate = (bool) (LenLiteralDiv2InTag == 0);
                        f_isLenLiteralDiv2Separate = true;
                        return _isLenLiteralDiv2Separate;
                    }
                }
                private byte? _lenLiteralDiv2Separate;
                private byte[] _literal;
                private byte _tag;
                private Dcmp0 m_root;
                private Dcmp0.Chunk m_parent;

                /// <summary>
                /// The length of the literal data,
                /// in two-byte units.
                /// 
                /// This field is only present if the tag byte's low nibble is zero.
                /// In practice,
                /// this only happens if the length is 0x10 or greater,
                /// because smaller lengths can be encoded into the tag byte.
                /// </summary>
                public byte? LenLiteralDiv2Separate { get { return _lenLiteralDiv2Separate; } }

                /// <summary>
                /// The literal data.
                /// </summary>
                public byte[] Literal { get { return _literal; } }

                /// <summary>
                /// The tag byte preceding this chunk body.
                /// </summary>
                public byte Tag { get { return _tag; } }
                public Dcmp0 M_Root { get { return m_root; } }
                public Dcmp0.Chunk M_Parent { get { return m_parent; } }
            }

            /// <summary>
            /// The body of a backreference chunk.
            /// 
            /// This chunk expands to the data stored in a preceding literal chunk,
            /// indicated by an index number (`index`).
            /// </summary>
            public partial class BackreferenceBody : KaitaiStruct
            {
                public BackreferenceBody(byte p_tag, KaitaiStream p__io, Dcmp0.Chunk p__parent = null, Dcmp0 p__root = null) : base(p__io)
                {
                    m_parent = p__parent;
                    m_root = p__root;
                    _tag = p_tag;
                    f_isIndexSeparate = false;
                    f_indexInTag = false;
                    f_indexSeparate = false;
                    f_index = false;
                    _read();
                }
                private void _read()
                {
                    if (IsIndexSeparate) {
                        switch (Tag) {
                        case 32: {
                            _indexSeparateMinus = m_io.ReadU1();
                            break;
                        }
                        case 33: {
                            _indexSeparateMinus = m_io.ReadU1();
                            break;
                        }
                        case 34: {
                            _indexSeparateMinus = m_io.ReadU2be();
                            break;
                        }
                        }
                    }
                }
                private bool f_isIndexSeparate;
                private bool _isIndexSeparate;

                /// <summary>
                /// Whether the index is stored separately from the tag.
                /// </summary>
                public bool IsIndexSeparate
                {
                    get
                    {
                        if (f_isIndexSeparate)
                            return _isIndexSeparate;
                        _isIndexSeparate = (bool) ( ((Tag >= 32) && (Tag <= 34)) );
                        f_isIndexSeparate = true;
                        return _isIndexSeparate;
                    }
                }
                private bool f_indexInTag;
                private int _indexInTag;

                /// <summary>
                /// The index of the referenced literal chunk,
                /// as stored in the tag byte.
                /// </summary>
                public int IndexInTag
                {
                    get
                    {
                        if (f_indexInTag)
                            return _indexInTag;
                        _indexInTag = (int) ((Tag - 35));
                        f_indexInTag = true;
                        return _indexInTag;
                    }
                }
                private bool f_indexSeparate;
                private int? _indexSeparate;

                /// <summary>
                /// The index of the referenced literal chunk,
                /// as stored separately from the tag byte,
                /// with the implicit offset corrected for.
                /// </summary>
                public int? IndexSeparate
                {
                    get
                    {
                        if (f_indexSeparate)
                            return _indexSeparate;
                        if (IsIndexSeparate) {
                            _indexSeparate = (int) (((IndexSeparateMinus + 40) + (Tag == 33 ? 256 : 0)));
                        }
                        f_indexSeparate = true;
                        return _indexSeparate;
                    }
                }
                private bool f_index;
                private int _index;

                /// <summary>
                /// The index of the referenced literal chunk.
                /// 
                /// Stored literals are assigned index numbers in the order in which they appear in the compressed data,
                /// starting at 0.
                /// Non-stored literals are not counted in the numbering and cannot be referenced using backreferences.
                /// Once an index is assigned to a stored literal,
                /// it is never changed or unassigned for the entire length of the compressed data.
                /// 
                /// As the name indicates,
                /// a backreference can only reference stored literal chunks found *before* the backreference,
                /// not ones that come after it.
                /// </summary>
                public int Index
                {
                    get
                    {
                        if (f_index)
                            return _index;
                        _index = (int) ((IsIndexSeparate ? IndexSeparate : IndexInTag));
                        f_index = true;
                        return _index;
                    }
                }
                private ushort _indexSeparateMinus;
                private byte _tag;
                private Dcmp0 m_root;
                private Dcmp0.Chunk m_parent;

                /// <summary>
                /// The index of the referenced literal chunk,
                /// stored separately from the tag.
                /// The value in this field is stored minus 0x28.
                /// If the tag byte is 0x21,
                /// the value is also stored minus 0x100,
                /// *on top of* the regular offset
                /// (i. e. minus 0x128 in total).
                /// 
                /// In other words,
                /// for tag bytes 0x20 and 0x21,
                /// the index is actually 9 bits large,
                /// with the low 8 bits stored separately and the highest bit stored in the lowest bit of the tag byte.
                /// 
                /// This field is only present if the tag byte is 0x20 through 0x22.
                /// For higher tag bytes,
                /// the index is encoded in the tag byte.
                /// Values smaller than 0x28 cannot be stored in this field,
                /// they must always be encoded in the tag byte.
                /// </summary>
                public ushort IndexSeparateMinus { get { return _indexSeparateMinus; } }

                /// <summary>
                /// The tag byte preceding this chunk body.
                /// </summary>
                public byte Tag { get { return _tag; } }
                public Dcmp0 M_Root { get { return m_root; } }
                public Dcmp0.Chunk M_Parent { get { return m_parent; } }
            }

            /// <summary>
            /// The body of a table lookup chunk.
            /// This body is always empty.
            /// 
            /// This chunk always expands to two bytes (`value`),
            /// determined from the tag byte using a fixed lookup table (`lookup_table`).
            /// This lookup table is hardcoded in the decompressor and always the same for all compressed data.
            /// </summary>
            public partial class TableLookupBody : KaitaiStruct
            {
                public TableLookupBody(byte p_tag, KaitaiStream p__io, Dcmp0.Chunk p__parent = null, Dcmp0 p__root = null) : base(p__io)
                {
                    m_parent = p__parent;
                    m_root = p__root;
                    _tag = p_tag;
                    f_lookupTable = false;
                    f_value = false;
                    _read();
                }
                private void _read()
                {
                }
                private bool f_lookupTable;
                private List<byte[]> _lookupTable;

                /// <summary>
                /// Fixed lookup table that maps tag byte numbers to two bytes each.
                /// 
                /// The entries in the lookup table are offset -
                /// index 0 stands for tag 0x4b, 1 for 0x4c, etc.
                /// </summary>
                public List<byte[]> LookupTable
                {
                    get
                    {
                        if (f_lookupTable)
                            return _lookupTable;
                        _lookupTable = (List<byte[]>) (new List<byte[]> { new byte[] { 0, 0 }, new byte[] { 78, 186 }, new byte[] { 0, 8 }, new byte[] { 78, 117 }, new byte[] { 0, 12 }, new byte[] { 78, 173 }, new byte[] { 32, 83 }, new byte[] { 47, 11 }, new byte[] { 97, 0 }, new byte[] { 0, 16 }, new byte[] { 112, 0 }, new byte[] { 47, 0 }, new byte[] { 72, 110 }, new byte[] { 32, 80 }, new byte[] { 32, 110 }, new byte[] { 47, 46 }, new byte[] { 255, 252 }, new byte[] { 72, 231 }, new byte[] { 63, 60 }, new byte[] { 0, 4 }, new byte[] { 255, 248 }, new byte[] { 47, 12 }, new byte[] { 32, 6 }, new byte[] { 78, 237 }, new byte[] { 78, 86 }, new byte[] { 32, 104 }, new byte[] { 78, 94 }, new byte[] { 0, 1 }, new byte[] { 88, 143 }, new byte[] { 79, 239 }, new byte[] { 0, 2 }, new byte[] { 0, 24 }, new byte[] { 96, 0 }, new byte[] { 255, 255 }, new byte[] { 80, 143 }, new byte[] { 78, 144 }, new byte[] { 0, 6 }, new byte[] { 38, 110 }, new byte[] { 0, 20 }, new byte[] { 255, 244 }, new byte[] { 76, 238 }, new byte[] { 0, 10 }, new byte[] { 0, 14 }, new byte[] { 65, 238 }, new byte[] { 76, 223 }, new byte[] { 72, 192 }, new byte[] { 255, 240 }, new byte[] { 45, 64 }, new byte[] { 0, 18 }, new byte[] { 48, 46 }, new byte[] { 112, 1 }, new byte[] { 47, 40 }, new byte[] { 32, 84 }, new byte[] { 103, 0 }, new byte[] { 0, 32 }, new byte[] { 0, 28 }, new byte[] { 32, 95 }, new byte[] { 24, 0 }, new byte[] { 38, 111 }, new byte[] { 72, 120 }, new byte[] { 0, 22 }, new byte[] { 65, 250 }, new byte[] { 48, 60 }, new byte[] { 40, 64 }, new byte[] { 114, 0 }, new byte[] { 40, 110 }, new byte[] { 32, 12 }, new byte[] { 102, 0 }, new byte[] { 32, 107 }, new byte[] { 47, 7 }, new byte[] { 85, 143 }, new byte[] { 0, 40 }, new byte[] { 255, 254 }, new byte[] { 255, 236 }, new byte[] { 34, 216 }, new byte[] { 32, 11 }, new byte[] { 0, 15 }, new byte[] { 89, 143 }, new byte[] { 47, 60 }, new byte[] { 255, 0 }, new byte[] { 1, 24 }, new byte[] { 129, 225 }, new byte[] { 74, 0 }, new byte[] { 78, 176 }, new byte[] { 255, 232 }, new byte[] { 72, 199 }, new byte[] { 0, 3 }, new byte[] { 0, 34 }, new byte[] { 0, 7 }, new byte[] { 0, 26 }, new byte[] { 103, 6 }, new byte[] { 103, 8 }, new byte[] { 78, 249 }, new byte[] { 0, 36 }, new byte[] { 32, 120 }, new byte[] { 8, 0 }, new byte[] { 102, 4 }, new byte[] { 0, 42 }, new byte[] { 78, 208 }, new byte[] { 48, 40 }, new byte[] { 38, 95 }, new byte[] { 103, 4 }, new byte[] { 0, 48 }, new byte[] { 67, 238 }, new byte[] { 63, 0 }, new byte[] { 32, 31 }, new byte[] { 0, 30 }, new byte[] { 255, 246 }, new byte[] { 32, 46 }, new byte[] { 66, 167 }, new byte[] { 32, 7 }, new byte[] { 255, 250 }, new byte[] { 96, 2 }, new byte[] { 61, 64 }, new byte[] { 12, 64 }, new byte[] { 102, 6 }, new byte[] { 0, 38 }, new byte[] { 45, 72 }, new byte[] { 47, 1 }, new byte[] { 112, 255 }, new byte[] { 96, 4 }, new byte[] { 24, 128 }, new byte[] { 74, 64 }, new byte[] { 0, 64 }, new byte[] { 0, 44 }, new byte[] { 47, 8 }, new byte[] { 0, 17 }, new byte[] { 255, 228 }, new byte[] { 33, 64 }, new byte[] { 38, 64 }, new byte[] { 255, 242 }, new byte[] { 66, 110 }, new byte[] { 78, 185 }, new byte[] { 61, 124 }, new byte[] { 0, 56 }, new byte[] { 0, 13 }, new byte[] { 96, 6 }, new byte[] { 66, 46 }, new byte[] { 32, 60 }, new byte[] { 103, 12 }, new byte[] { 45, 104 }, new byte[] { 102, 8 }, new byte[] { 74, 46 }, new byte[] { 74, 174 }, new byte[] { 0, 46 }, new byte[] { 72, 64 }, new byte[] { 34, 95 }, new byte[] { 34, 0 }, new byte[] { 103, 10 }, new byte[] { 48, 7 }, new byte[] { 66, 103 }, new byte[] { 0, 50 }, new byte[] { 32, 40 }, new byte[] { 0, 9 }, new byte[] { 72, 122 }, new byte[] { 2, 0 }, new byte[] { 47, 43 }, new byte[] { 0, 5 }, new byte[] { 34, 110 }, new byte[] { 102, 2 }, new byte[] { 229, 128 }, new byte[] { 103, 14 }, new byte[] { 102, 10 }, new byte[] { 0, 80 }, new byte[] { 62, 0 }, new byte[] { 102, 12 }, new byte[] { 46, 0 }, new byte[] { 255, 238 }, new byte[] { 32, 109 }, new byte[] { 32, 64 }, new byte[] { 255, 224 }, new byte[] { 83, 64 }, new byte[] { 96, 8 }, new byte[] { 4, 128 }, new byte[] { 0, 104 }, new byte[] { 11, 124 }, new byte[] { 68, 0 }, new byte[] { 65, 232 }, new byte[] { 72, 65 } });
                        f_lookupTable = true;
                        return _lookupTable;
                    }
                }
                private bool f_value;
                private byte[] _value;

                /// <summary>
                /// The two bytes that the tag byte expands to,
                /// based on the fixed lookup table.
                /// </summary>
                public byte[] Value
                {
                    get
                    {
                        if (f_value)
                            return _value;
                        _value = (byte[]) (LookupTable[(Tag - 75)]);
                        f_value = true;
                        return _value;
                    }
                }
                private byte _tag;
                private Dcmp0 m_root;
                private Dcmp0.Chunk m_parent;

                /// <summary>
                /// The tag byte preceding this chunk body.
                /// </summary>
                public byte Tag { get { return _tag; } }
                public Dcmp0 M_Root { get { return m_root; } }
                public Dcmp0.Chunk M_Parent { get { return m_parent; } }
            }

            /// <summary>
            /// The body of an end chunk.
            /// This body is always empty.
            /// 
            /// The last chunk in the compressed data must always be an end chunk.
            /// An end chunk cannot appear elsewhere in the compressed data.
            /// </summary>
            public partial class EndBody : KaitaiStruct
            {
                public static EndBody FromFile(string fileName)
                {
                    return new EndBody(new KaitaiStream(fileName));
                }

                public EndBody(KaitaiStream p__io, Dcmp0.Chunk p__parent = null, Dcmp0 p__root = null) : base(p__io)
                {
                    m_parent = p__parent;
                    m_root = p__root;
                    _read();
                }
                private void _read()
                {
                }
                private Dcmp0 m_root;
                private Dcmp0.Chunk m_parent;
                public Dcmp0 M_Root { get { return m_root; } }
                public Dcmp0.Chunk M_Parent { get { return m_parent; } }
            }

            /// <summary>
            /// The body of an extended chunk.
            /// The meaning of this chunk depends on the extended tag byte stored in the chunk data.
            /// </summary>
            public partial class ExtendedBody : KaitaiStruct
            {
                public static ExtendedBody FromFile(string fileName)
                {
                    return new ExtendedBody(new KaitaiStream(fileName));
                }

                public ExtendedBody(KaitaiStream p__io, Dcmp0.Chunk p__parent = null, Dcmp0 p__root = null) : base(p__io)
                {
                    m_parent = p__parent;
                    m_root = p__root;
                    _read();
                }
                private void _read()
                {
                    _tag = m_io.ReadU1();
                    switch (Tag) {
                    case 0: {
                        _body = new JumpTableBody(m_io, this, m_root);
                        break;
                    }
                    case 4: {
                        _body = new DeltaEncoding16BitBody(m_io, this, m_root);
                        break;
                    }
                    case 6: {
                        _body = new DeltaEncoding32BitBody(m_io, this, m_root);
                        break;
                    }
                    case 3: {
                        _body = new RepeatBody(Tag, m_io, this, m_root);
                        break;
                    }
                    case 2: {
                        _body = new RepeatBody(Tag, m_io, this, m_root);
                        break;
                    }
                    }
                }

                /// <summary>
                /// The body of a jump table chunk.
                /// 
                /// This chunk generates parts of a segment loader jump table,
                /// in the format found in `'CODE' (0)` resources.
                /// It expands to the following data,
                /// with all non-constant numbers encoded as unsigned 16-bit big-endian integers:
                /// 
                /// * `0x3f 0x3c` (push following segment number onto stack)
                /// * The segment number
                /// * `0xa9 0xf0` (`_LoadSeg` trap)
                /// * For each address:
                ///   * The address
                ///   * `0x3f 0x3c` (push following segment number onto stack)
                ///   * The segment number
                ///   * `0xa9 0xf0` (`_LoadSeg` trap)
                /// 
                /// Note that this generates one jump table entry without an address before it,
                /// meaning that this address needs to be generated by the preceding chunk.
                /// All following jump table entries are generated with the addresses encoded in this chunk.
                /// </summary>
                public partial class JumpTableBody : KaitaiStruct
                {
                    public static JumpTableBody FromFile(string fileName)
                    {
                        return new JumpTableBody(new KaitaiStream(fileName));
                    }

                    public JumpTableBody(KaitaiStream p__io, Dcmp0.Chunk.ExtendedBody p__parent = null, Dcmp0 p__root = null) : base(p__io)
                    {
                        m_parent = p__parent;
                        m_root = p__root;
                        f_segmentNumber = false;
                        f_numAddresses = false;
                        _read();
                    }
                    private void _read()
                    {
                        _segmentNumberRaw = new DcmpVariableLengthInteger(m_io);
                        _numAddressesRaw = new DcmpVariableLengthInteger(m_io);
                        _addressesRaw = new List<DcmpVariableLengthInteger>((int) (NumAddresses));
                        for (var i = 0; i < NumAddresses; i++)
                        {
                            _addressesRaw.Add(new DcmpVariableLengthInteger(m_io));
                        }
                    }
                    private bool f_segmentNumber;
                    private int _segmentNumber;

                    /// <summary>
                    /// The segment number for all of the generated jump table entries.
                    /// 
                    /// Although it is stored as a variable-length integer,
                    /// the segment number must be in the range `0x0 &lt;= x &lt;= 0xffff`,
                    /// i. e. an unsigned 16-bit integer.
                    /// </summary>
                    public int SegmentNumber
                    {
                        get
                        {
                            if (f_segmentNumber)
                                return _segmentNumber;
                            _segmentNumber = (int) (SegmentNumberRaw.Value);
                            f_segmentNumber = true;
                            return _segmentNumber;
                        }
                    }
                    private bool f_numAddresses;
                    private int _numAddresses;

                    /// <summary>
                    /// The number of addresses stored in this chunk.
                    /// 
                    /// This number must be greater than 0.
                    /// </summary>
                    public int NumAddresses
                    {
                        get
                        {
                            if (f_numAddresses)
                                return _numAddresses;
                            _numAddresses = (int) (NumAddressesRaw.Value);
                            f_numAddresses = true;
                            return _numAddresses;
                        }
                    }
                    private DcmpVariableLengthInteger _segmentNumberRaw;
                    private DcmpVariableLengthInteger _numAddressesRaw;
                    private List<DcmpVariableLengthInteger> _addressesRaw;
                    private Dcmp0 m_root;
                    private Dcmp0.Chunk.ExtendedBody m_parent;

                    /// <summary>
                    /// Raw variable-length integer representation of `segment_number`.
                    /// </summary>
                    public DcmpVariableLengthInteger SegmentNumberRaw { get { return _segmentNumberRaw; } }

                    /// <summary>
                    /// Raw variable-length integer representation of `num_addresses`.
                    /// </summary>
                    public DcmpVariableLengthInteger NumAddressesRaw { get { return _numAddressesRaw; } }

                    /// <summary>
                    /// The addresses for each generated jump table entry,
                    /// stored as variable-length integers.
                    /// 
                    /// The first address is stored literally and must be in the range `0x0 &lt;= x &lt;= 0xffff`,
                    /// i. e. an unsigned 16-bit integer.
                    /// 
                    /// All following addresses are stored as deltas relative to the previous address.
                    /// Each of these deltas is stored plus 6;
                    /// this value needs to be subtracted before (or after) adding it to the previous address.
                    /// 
                    /// Each delta (after subtracting 6) should be positive,
                    /// and adding it to the previous address should not result in a value larger than `0xffff`,
                    /// i. e. there should be no 16-bit unsigned integer wraparound.
                    /// These conditions are always met in all known jump table chunks,
                    /// so it is not known how the original decompressor behaves otherwise.
                    /// </summary>
                    public List<DcmpVariableLengthInteger> AddressesRaw { get { return _addressesRaw; } }
                    public Dcmp0 M_Root { get { return m_root; } }
                    public Dcmp0.Chunk.ExtendedBody M_Parent { get { return m_parent; } }
                }

                /// <summary>
                /// The body of a repeat chunk.
                /// 
                /// This chunk expands to a 1-byte or 2-byte value repeated a number of times,
                /// i. e. it implements a form of run-length encoding.
                /// </summary>
                public partial class RepeatBody : KaitaiStruct
                {
                    public RepeatBody(byte p_tag, KaitaiStream p__io, Dcmp0.Chunk.ExtendedBody p__parent = null, Dcmp0 p__root = null) : base(p__io)
                    {
                        m_parent = p__parent;
                        m_root = p__root;
                        _tag = p_tag;
                        f_byteCount = false;
                        f_toRepeat = false;
                        f_repeatCountM1 = false;
                        f_repeatCount = false;
                        _read();
                    }
                    private void _read()
                    {
                        _toRepeatRaw = new DcmpVariableLengthInteger(m_io);
                        _repeatCountM1Raw = new DcmpVariableLengthInteger(m_io);
                    }
                    private bool f_byteCount;
                    private int _byteCount;

                    /// <summary>
                    /// The length in bytes of the value to be repeated.
                    /// Regardless of the byte count,
                    /// the value to be repeated is stored as a variable-length integer.
                    /// </summary>
                    public int ByteCount
                    {
                        get
                        {
                            if (f_byteCount)
                                return _byteCount;
                            _byteCount = (int) ((Tag == 2 ? 1 : (Tag == 3 ? 2 : -1)));
                            f_byteCount = true;
                            return _byteCount;
                        }
                    }
                    private bool f_toRepeat;
                    private int _toRepeat;

                    /// <summary>
                    /// The value to repeat.
                    /// 
                    /// Although it is stored as a variable-length integer,
                    /// this value must fit into an unsigned big-endian integer that is as long as `byte_count`,
                    /// i. e. either 8 or 16 bits.
                    /// </summary>
                    public int ToRepeat
                    {
                        get
                        {
                            if (f_toRepeat)
                                return _toRepeat;
                            _toRepeat = (int) (ToRepeatRaw.Value);
                            f_toRepeat = true;
                            return _toRepeat;
                        }
                    }
                    private bool f_repeatCountM1;
                    private int _repeatCountM1;

                    /// <summary>
                    /// The number of times to repeat the value,
                    /// minus one.
                    /// 
                    /// This value must not be negative.
                    /// </summary>
                    public int RepeatCountM1
                    {
                        get
                        {
                            if (f_repeatCountM1)
                                return _repeatCountM1;
                            _repeatCountM1 = (int) (RepeatCountM1Raw.Value);
                            f_repeatCountM1 = true;
                            return _repeatCountM1;
                        }
                    }
                    private bool f_repeatCount;
                    private int _repeatCount;

                    /// <summary>
                    /// The number of times to repeat the value.
                    /// 
                    /// This value must be positive.
                    /// </summary>
                    public int RepeatCount
                    {
                        get
                        {
                            if (f_repeatCount)
                                return _repeatCount;
                            _repeatCount = (int) ((RepeatCountM1 + 1));
                            f_repeatCount = true;
                            return _repeatCount;
                        }
                    }
                    private DcmpVariableLengthInteger _toRepeatRaw;
                    private DcmpVariableLengthInteger _repeatCountM1Raw;
                    private byte _tag;
                    private Dcmp0 m_root;
                    private Dcmp0.Chunk.ExtendedBody m_parent;

                    /// <summary>
                    /// Raw variable-length integer representation of `to_repeat`.
                    /// </summary>
                    public DcmpVariableLengthInteger ToRepeatRaw { get { return _toRepeatRaw; } }

                    /// <summary>
                    /// Raw variable-length integer representation of `repeat_count_m1`.
                    /// </summary>
                    public DcmpVariableLengthInteger RepeatCountM1Raw { get { return _repeatCountM1Raw; } }

                    /// <summary>
                    /// The extended tag byte preceding this chunk body.
                    /// </summary>
                    public byte Tag { get { return _tag; } }
                    public Dcmp0 M_Root { get { return m_root; } }
                    public Dcmp0.Chunk.ExtendedBody M_Parent { get { return m_parent; } }
                }

                /// <summary>
                /// The body of a 16-bit delta encoding chunk.
                /// 
                /// This chunk expands to a sequence of 16-bit big-endian integer values.
                /// The first value is stored literally.
                /// All following values are stored as deltas relative to the previous value.
                /// </summary>
                public partial class DeltaEncoding16BitBody : KaitaiStruct
                {
                    public static DeltaEncoding16BitBody FromFile(string fileName)
                    {
                        return new DeltaEncoding16BitBody(new KaitaiStream(fileName));
                    }

                    public DeltaEncoding16BitBody(KaitaiStream p__io, Dcmp0.Chunk.ExtendedBody p__parent = null, Dcmp0 p__root = null) : base(p__io)
                    {
                        m_parent = p__parent;
                        m_root = p__root;
                        f_firstValue = false;
                        f_numDeltas = false;
                        _read();
                    }
                    private void _read()
                    {
                        _firstValueRaw = new DcmpVariableLengthInteger(m_io);
                        _numDeltasRaw = new DcmpVariableLengthInteger(m_io);
                        _deltas = new List<sbyte>((int) (NumDeltas));
                        for (var i = 0; i < NumDeltas; i++)
                        {
                            _deltas.Add(m_io.ReadS1());
                        }
                    }
                    private bool f_firstValue;
                    private int _firstValue;

                    /// <summary>
                    /// The first value in the sequence.
                    /// 
                    /// Although it is stored as a variable-length integer,
                    /// this value must be in the range `-0x8000 &lt;= x &lt;= 0x7fff`,
                    /// i. e. a signed 16-bit integer.
                    /// </summary>
                    public int FirstValue
                    {
                        get
                        {
                            if (f_firstValue)
                                return _firstValue;
                            _firstValue = (int) (FirstValueRaw.Value);
                            f_firstValue = true;
                            return _firstValue;
                        }
                    }
                    private bool f_numDeltas;
                    private int _numDeltas;

                    /// <summary>
                    /// The number of deltas stored in this chunk.
                    /// 
                    /// This number must not be negative.
                    /// </summary>
                    public int NumDeltas
                    {
                        get
                        {
                            if (f_numDeltas)
                                return _numDeltas;
                            _numDeltas = (int) (NumDeltasRaw.Value);
                            f_numDeltas = true;
                            return _numDeltas;
                        }
                    }
                    private DcmpVariableLengthInteger _firstValueRaw;
                    private DcmpVariableLengthInteger _numDeltasRaw;
                    private List<sbyte> _deltas;
                    private Dcmp0 m_root;
                    private Dcmp0.Chunk.ExtendedBody m_parent;

                    /// <summary>
                    /// Raw variable-length integer representation of `first_value`.
                    /// </summary>
                    public DcmpVariableLengthInteger FirstValueRaw { get { return _firstValueRaw; } }

                    /// <summary>
                    /// Raw variable-length integer representation of `num_deltas`.
                    /// </summary>
                    public DcmpVariableLengthInteger NumDeltasRaw { get { return _numDeltasRaw; } }

                    /// <summary>
                    /// The deltas for each value relative to the previous value.
                    /// 
                    /// Each of these deltas is a signed 8-bit value.
                    /// When adding the delta to the previous value,
                    /// 16-bit integer wraparound is performed if necessary,
                    /// so that the resulting value always fits into a 16-bit signed integer.
                    /// </summary>
                    public List<sbyte> Deltas { get { return _deltas; } }
                    public Dcmp0 M_Root { get { return m_root; } }
                    public Dcmp0.Chunk.ExtendedBody M_Parent { get { return m_parent; } }
                }

                /// <summary>
                /// The body of a 32-bit delta encoding chunk.
                /// 
                /// This chunk expands to a sequence of 32-bit big-endian integer values.
                /// The first value is stored literally.
                /// All following values are stored as deltas relative to the previous value.
                /// </summary>
                public partial class DeltaEncoding32BitBody : KaitaiStruct
                {
                    public static DeltaEncoding32BitBody FromFile(string fileName)
                    {
                        return new DeltaEncoding32BitBody(new KaitaiStream(fileName));
                    }

                    public DeltaEncoding32BitBody(KaitaiStream p__io, Dcmp0.Chunk.ExtendedBody p__parent = null, Dcmp0 p__root = null) : base(p__io)
                    {
                        m_parent = p__parent;
                        m_root = p__root;
                        f_firstValue = false;
                        f_numDeltas = false;
                        _read();
                    }
                    private void _read()
                    {
                        _firstValueRaw = new DcmpVariableLengthInteger(m_io);
                        _numDeltasRaw = new DcmpVariableLengthInteger(m_io);
                        _deltasRaw = new List<DcmpVariableLengthInteger>((int) (NumDeltas));
                        for (var i = 0; i < NumDeltas; i++)
                        {
                            _deltasRaw.Add(new DcmpVariableLengthInteger(m_io));
                        }
                    }
                    private bool f_firstValue;
                    private int _firstValue;

                    /// <summary>
                    /// The first value in the sequence.
                    /// </summary>
                    public int FirstValue
                    {
                        get
                        {
                            if (f_firstValue)
                                return _firstValue;
                            _firstValue = (int) (FirstValueRaw.Value);
                            f_firstValue = true;
                            return _firstValue;
                        }
                    }
                    private bool f_numDeltas;
                    private int _numDeltas;

                    /// <summary>
                    /// The number of deltas stored in this chunk.
                    /// 
                    /// This number must not be negative.
                    /// </summary>
                    public int NumDeltas
                    {
                        get
                        {
                            if (f_numDeltas)
                                return _numDeltas;
                            _numDeltas = (int) (NumDeltasRaw.Value);
                            f_numDeltas = true;
                            return _numDeltas;
                        }
                    }
                    private DcmpVariableLengthInteger _firstValueRaw;
                    private DcmpVariableLengthInteger _numDeltasRaw;
                    private List<DcmpVariableLengthInteger> _deltasRaw;
                    private Dcmp0 m_root;
                    private Dcmp0.Chunk.ExtendedBody m_parent;

                    /// <summary>
                    /// Raw variable-length integer representation of `first_value`.
                    /// </summary>
                    public DcmpVariableLengthInteger FirstValueRaw { get { return _firstValueRaw; } }

                    /// <summary>
                    /// Raw variable-length integer representation of `num_deltas`.
                    /// </summary>
                    public DcmpVariableLengthInteger NumDeltasRaw { get { return _numDeltasRaw; } }

                    /// <summary>
                    /// The deltas for each value relative to the previous value,
                    /// stored as variable-length integers.
                    /// 
                    /// Each of these deltas is a signed value.
                    /// When adding the delta to the previous value,
                    /// 32-bit integer wraparound is performed if necessary,
                    /// so that the resulting value always fits into a 32-bit signed integer.
                    /// </summary>
                    public List<DcmpVariableLengthInteger> DeltasRaw { get { return _deltasRaw; } }
                    public Dcmp0 M_Root { get { return m_root; } }
                    public Dcmp0.Chunk.ExtendedBody M_Parent { get { return m_parent; } }
                }
                private byte _tag;
                private KaitaiStruct _body;
                private Dcmp0 m_root;
                private Dcmp0.Chunk m_parent;

                /// <summary>
                /// The chunk's extended tag byte.
                /// This controls the structure of the body and the meaning of the chunk.
                /// </summary>
                public byte Tag { get { return _tag; } }

                /// <summary>
                /// The chunk's body.
                /// </summary>
                public KaitaiStruct Body { get { return _body; } }
                public Dcmp0 M_Root { get { return m_root; } }
                public Dcmp0.Chunk M_Parent { get { return m_parent; } }
            }
            private byte _tag;
            private KaitaiStruct _body;
            private Dcmp0 m_root;
            private Dcmp0 m_parent;

            /// <summary>
            /// The chunk's tag byte.
            /// This controls the structure of the body and the meaning of the chunk.
            /// </summary>
            public byte Tag { get { return _tag; } }

            /// <summary>
            /// The chunk's body.
            /// 
            /// Certain chunks do not have any data following the tag byte.
            /// In this case,
            /// the body is a zero-length structure.
            /// </summary>
            public KaitaiStruct Body { get { return _body; } }
            public Dcmp0 M_Root { get { return m_root; } }
            public Dcmp0 M_Parent { get { return m_parent; } }
        }
        private List<Chunk> _chunks;
        private Dcmp0 m_root;
        private KaitaiStruct m_parent;

        /// <summary>
        /// The sequence of chunks that make up the compressed data.
        /// </summary>
        public List<Chunk> Chunks { get { return _chunks; } }
        public Dcmp0 M_Root { get { return m_root; } }
        public KaitaiStruct M_Parent { get { return m_parent; } }
    }
}